• hdu4632 Palindrome subsequence


    Palindrome subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/Others)
    Total Submission(s): 2280    Accepted Submission(s): 913


    Problem Description
    In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements. For example, the sequence <A, B, D> is a subsequence of <A, B, C, D, E, F>.
    (http://en.wikipedia.org/wiki/Subsequence)

    Given a string S, your task is to find out how many different subsequence of S is palindrome. Note that for any two subsequence X = <Sx1, Sx2, ..., Sxk> and Y = <Sy1, Sy2, ..., Syk> , if there exist an integer i (1<=i<=k) such that xi != yi, the subsequence X and Y should be consider different even if Sxi = Syi. Also two subsequences with different length should be considered different.
     
    Input
    The first line contains only one integer T (T<=50), which is the number of test cases. Each test case contains a string S, the length of S is not greater than 1000 and only contains lowercase letters.
     
    Output
    For each test case, output the case number first, then output the number of different subsequence of the given string, the answer should be module 10007.
     
    Sample Input
    4 a aaaaa goodafternooneveryone welcometoooxxourproblems
     
    Sample Output
    Case 1: 1 Case 2: 31 Case 3: 421 Case 4: 960
     
    Source
    dp[i][j] 表示 包含 a[i]的,到 j 的回文个数
    转移:
    dp[i][j] = 1 ;
    dp[i][j] = dp[i][j-1] ; i < j
    if(a[i]==a[j]) dp[i][j] += dp[k][j-1]  ; i < k < j 
    这样是n^3的,会T
    所以用 sum[i][j] 表示到回文个数,优化转移
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<cstdio>
    #define maxn 100010
    #define LL long long
    #define mod 10007
    using namespace std;
    
    int dp[1010][1010],sum[1010][1010];
    char a[1010] ;
    int main()
    {
        int n,i,j,m;
        int T,case1=0;
        cin >> T ;
        while( T-- )
        {
            scanf("%s",a+1) ;
            n = strlen(a+1) ;
            memset(dp,0,sizeof(dp)) ;
            memset(sum,0,sizeof(sum)) ;
            for( i = n ; i >= 1 ;i--)
                for( j = i ; j <= n ;j++)
            {
                if(i==j)
                {
                    dp[i][j]=1;
                    sum[i][j]=1;
                    continue;
                }
                dp[i][j] = dp[i][j-1] ;
                if(a[i]==a[j])
                {
                    dp[i][j]++;
                   // for(int k = i+1 ; k < j ;k++)
                       // dp[i][j] += dp[k][j-1];
                       dp[i][j] += sum[i+1][j-1] ;
                }
                dp[i][j] %= mod;
                sum[i][j] = (sum[i+1][j]+dp[i][j])%mod;
            }
            int ans=0;
            for(i = 1 ; i <= n ;i++)
                ans = (ans+dp[i][n])%mod ;
            printf("Case %d: %d
    ",++case1,ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    JAVA周二学习总结
    2019春总结作业
    第十二周作业
    第十一周作业
    第十周作业
    第九周作业
    第八周作业
    第七周作业
    第六周作业
    第四周课程总结&试验报告(二)
  • 原文地址:https://www.cnblogs.com/20120125llcai/p/3901525.html
Copyright © 2020-2023  润新知