• bzoj4821


    线段树

    这题真是无聊

    把式子拆开,然后可知维护xi,yi,xi^2,xi*yi,重点在于标记下传,当我们进行2号操作时,直接累加进答案和标记即可,进行3号操作时,update时先把自己这层赋值成要改变的值,再清空这层2号标记,每次pushdown把这层的下一层的标记清空,因为下一层被覆盖了,pushdown先执行3号标记,再执行2号标记,因为存在的2号标记肯定在3号标记后打的,否则肯定会被清空,所以2号标记应该在三号标记后。

    而下一层的2号标记肯定是在三号标记之前打的,因为标记已经下传。

    #include<bits/stdc++.h>
    using namespace std;
    typedef double ld;
    const int N = 100010;
    int n, m;
    ld x[N], y[N];
    struct node {
        double sumx, sumy, sumxx, sumxy;
        node(ld sumx = 0, ld sumy = 0, ld sumxx = 0, ld sumxy = 0) : sumx(sumx), sumy(sumy), sumxx(sumxx), sumxy(sumxy) {}
        void print()
        {
            printf("sumx=%.10f sumy=%.10f sumxx=%.10f sumxy=%.10f
    ", sumx, sumy, sumxx, sumxy);
        }
    };
    struct seg {
        node tree[N << 2];
        ld tagx2[N << 2], tagy2[N << 2], tagx3[N << 2], tagy3[N << 2];
        bool can1[N << 2], can2[N << 2];
        ld calc(ld x)
        {
            return (ld)x * (ld)(x + 1) * (ld)(2 * x + 1) / 6;
        }
        void pushdown(int o, int l, int r)
        {
            int mid = (l + r) >> 1;
            if(can1[o])
            {
                tree[o << 1].sumx = (ld)(mid - l + 1) * tagx3[o] + (ld)(mid + l) * (ld)(mid - l + 1) / 2.0;  
                tree[o << 1 | 1].sumx = (ld)(r - mid) * tagx3[o] + (ld)(r + mid + 1) * (ld)(r - mid) / 2.0;
                tree[o << 1].sumy = (ld)(mid - l + 1) * tagy3[o] + (ld)(mid + l) * (ld)(mid - l + 1) / 2.0;  
                tree[o << 1 | 1].sumy = (ld)(r - mid) * tagy3[o] + (ld)(r + mid + 1) * (ld)(r - mid) / 2.0;
                tree[o << 1].sumxx = calc(tagx3[o] + mid) - calc(tagx3[o] + l - 1);
                tree[o << 1 | 1].sumxx = calc(tagx3[o] + r) - calc(tagx3[o] + mid);
                tree[o << 1].sumxy = (ld)(mid - l + 1) * tagx3[o] * tagy3[o] + (ld)(tagx3[o] + tagy3[o]) * (ld)(mid + l) * (ld)(mid - l + 1) / 2.0 + calc(mid) - calc(l - 1);    
                tree[o << 1 | 1].sumxy = (ld)(r - mid) * tagx3[o] * tagy3[o] + (ld)(tagx3[o] + tagy3[o]) * (ld)(r + mid + 1) * (ld)(r - mid) / 2.0 + calc(r) - calc(mid);
                tagx3[o << 1] = tagx3[o << 1 | 1] = tagx3[o];
                tagy3[o << 1] = tagy3[o << 1 | 1] = tagy3[o];
                tagx3[o] = tagy3[o] = 0;
                tagx2[o << 1] = tagx2[o << 1 | 1] = tagy2[o << 1] = tagy2[o << 1 | 1] = 0;
                can2[o << 1] = can2[o << 1 | 1] = 0;
                can1[o << 1] = can1[o << 1 | 1] = can1[o];
                can1[o] = 0;
            }
            if(can2[o])
            {
                tree[o << 1].sumxx += 2.0 * tree[o << 1].sumx * tagx2[o] + (ld)(mid - l + 1) * tagx2[o] * tagx2[o];
                tree[o << 1 | 1].sumxx += 2.0 * tree[o << 1 | 1].sumx * tagx2[o] + (ld)(r - mid) * tagx2[o] * tagx2[o];
                tree[o << 1].sumxy += tree[o << 1].sumx * tagy2[o] + tree[o << 1].sumy * tagx2[o] + (ld)(mid - l + 1) * tagx2[o] * tagy2[o];
                tree[o << 1 | 1].sumxy += tree[o << 1 | 1].sumx * tagy2[o] + tree[o << 1 | 1].sumy * tagx2[o] + (ld)(r - mid) * tagx2[o] * tagy2[o];
                tree[o << 1].sumx += tagx2[o] * (ld)(mid - l + 1);
                tree[o << 1 | 1].sumx += tagx2[o] * (ld)(r - mid); 
                tree[o << 1].sumy += tagy2[o] * (ld)(mid - l + 1);
                tree[o << 1 | 1].sumy += tagy2[o] * (ld)(r - mid);
                tagx2[o << 1] += tagx2[o];
                tagx2[o << 1 | 1] += tagx2[o];
                tagy2[o << 1] += tagy2[o];
                tagy2[o << 1 | 1] += tagy2[o];
                tagx2[o] = 0;
                tagy2[o] = 0; 
                can2[o << 1] = can2[o << 1 | 1] = can2[o];
                can2[o] = 0;
            }        
        }
        node merge(node B, node C)
        {
            node A;
            A.sumx = B.sumx + C.sumx;
            A.sumy = B.sumy + C.sumy;
            A.sumxx = B.sumxx + C.sumxx;
            A.sumxy = B.sumxy + C.sumxy;
            return A;
        }
        void build(int l, int r, int o)
        {
            if(l == r)
            {
                tree[o] = node(x[l], y[l], x[l] * x[l], x[l] * y[l]);            
                return;
            }
            int mid = (l + r) >> 1;
            build(l, mid, o << 1);
            build(mid + 1, r, o << 1 | 1);
            tree[o] = merge(tree[o << 1], tree[o << 1 | 1]);
        }
        node query(int l, int r, int o, int a, int b)
        {
            if(l > b || r < a) return tree[0];
            if(l >= a && r <= b) return tree[o];
            int mid = (l + r) >> 1;
            pushdown(o, l, r);
            node tx = query(l, mid, o << 1, a, b), ty = query(mid + 1, r, o << 1 | 1, a, b);
            return merge(tx, ty);
        }
        void update2(int l, int r, int o, int a, int b, ld s, ld t)
        {
            if(l > b || r < a) return;
            if(l >= a && r <= b)
            {
                tagx2[o] += s;
                tagy2[o] += t;
                tree[o].sumxx += 2.0 * tree[o].sumx * s + (ld)(r - l + 1) * s * s;
                tree[o].sumxy += t * tree[o].sumx + s * tree[o].sumy + (ld)(r - l + 1) * s * t;         
                tree[o].sumx += (ld)(r - l + 1) * s;
                tree[o].sumy += (ld)(r - l + 1) * t;
                can2[o] = 1;
                return;
            }
            pushdown(o, l, r);
            int mid = (l + r) >> 1;
            update2(l, mid, o << 1, a, b, s, t);
            update2(mid + 1, r, o << 1 | 1, a, b, s, t);
            tree[o] = merge(tree[o << 1], tree[o << 1 | 1]);
        }
        void update3(int l, int r, int o, int a, int b, ld s, ld t)
        {
            if(l > b || r < a) return;
            if(l >= a && r <= b)
            {
                tagx3[o] = s;
                tagy3[o] = t;
                tagx2[o] = tagy2[o] = 0;
                tree[o].sumx = (ld)(r - l + 1) * s + (ld)(l + r) * (ld)(r - l + 1) / 2.0; 
                tree[o].sumy = (ld)(r - l + 1) * t + (ld)(l + r) * (ld)(r - l + 1) / 2.0;
                tree[o].sumxx = calc(s + r) - calc(s + l - 1);
                tree[o].sumxy = (ld)(r - l + 1) * s * t + ((ld)(l + r) * (ld)(r - l + 1) / 2.0) * (ld)(s + t) + calc(r) - calc(l - 1);
                can1[o] = 1;
                can2[o] = 0;
                return;
            }
            pushdown(o, l, r);
            int mid = (l + r) >> 1;
            update3(l, mid, o << 1, a, b, s, t);
            update3(mid + 1, r, o << 1 | 1, a, b, s, t);
            tree[o] = merge(tree[o << 1], tree[o << 1 | 1]);        
        }
    } t;
    int main()
    {
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= n; ++i)
            scanf("%lf", &x[i]);
        for(int i = 1; i <= n; ++i)
            scanf("%lf", &y[i]);
        t.build(1, n, 1);
        for(int i = 1; i <= m; ++i)
        {
            int opt, l, r;
            ld S, T;
            scanf("%d", &opt);
            if(opt == 1)
            {
                scanf("%d%d", &l, &r);
                node o = t.query(1, n, 1, l, r);
                ld ox = o.sumx / (ld)(r - l + 1), oy =  o.sumy / (ld)(r - l + 1);
                ld up = ((ld)(r - l + 1) * o.sumxy - o.sumx * o.sumy), down = ((ld)(r - l + 1) * o.sumxx - o.sumx * o.sumx), ans = up / down; 
                printf("%.10f
    ", ans);
            }
            if(opt == 2)
            {
                scanf("%d%d%lf%lf", &l, &r, &S, &T);
                t.update2(1, n, 1, l, r, S, T);
            }
            if(opt == 3)
            {
                scanf("%d%d%lf%lf", &l, &r, &S, &T);
                t.update3(1, n, 1, l, r, S, T);
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    直接插入排序
    归并排序
    正则问题
    九宫重排
    java合并两个集合并通过stream流构建响应结果
    企业微信扫码登录
    docker安装es
    docker安装nacos随记
    解决docker安装mysql8.0无法远程连接问题
    java分析工具10:jvm测试与调优
  • 原文地址:https://www.cnblogs.com/19992147orz/p/7223553.html
Copyright © 2020-2023  润新知