• HDU 1081 to the max 基础DP 好题


                      To The Max



    Problem Description
    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

    As an example, the maximal sub-rectangle of the array:

    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2

    is in the lower left corner:

    9 2
    -4 1
    -1 8

    and has a sum of 15.
     


    Input
    The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
     


    Output
    Output the sum of the maximal sub-rectangle.
     


    Sample Input
    4
    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2
     


    Sample Output
    15
     
     
     
     
     
    就是给一个n*n的矩阵,求出它的最大子矩阵
     
    我们都做过求一个序列的最大子序列吧。O(n)的复杂度。
     
    这道题就是那道题转化一下。
     
    暴力枚举第k1行到第k2行每一列各个元素的和sum[i],然后对sum[i]进行一次最大子序列求和
     
    然后不断更新答案
     
     
     
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 
     5 using namespace std;
     6 
     7 const int maxn=105;
     8 
     9 int a[maxn][maxn];
    10 int sum[maxn];
    11 int dp[maxn];
    12 
    13 int main()
    14 {
    15     int n;
    16     while(scanf("%d",&n)!=EOF)
    17     {
    18         for(int i=1;i<=n;i++)
    19             for(int j=1;j<=n;j++)
    20                 scanf("%d",&a[i][j]);
    21 
    22         int ans=-1000000;
    23 
    24         for(int i=1;i<=n;i++)
    25         {
    26             memset(dp,0,sizeof(dp));
    27             memset(sum,0,sizeof(sum));
    28             for(int j=i;j<=n;j++)
    29             {
    30                 for(int k=1;k<=n;k++)
    31                 {
    32                     sum[k]+=a[j][k];
    33                 }
    34 
    35                 for(int k=1;k<=n;k++)
    36                 {
    37                     dp[k]=max(dp[k-1],0)+sum[k];
    38                     if(dp[k]>ans)
    39                         ans=dp[k];
    40                 }
    41 
    42             }
    43         }
    44 
    45         printf("%d
    ",ans);
    46     }
    47 
    48     return 0;
    49 }
    View Code
     
     
     
     
     
     
     
     
     
  • 相关阅读:
    通过mixins方法处理调取服务器时间
    记录个人对vuex的简单理解
    利用弹性布局实现垂直居中
    vue.set的适用方法
    深拷贝和浅拷贝的实现方法
    Maven安装步骤
    build tools
    Git
    Url和Uri的区别
    函数式编程语言
  • 原文地址:https://www.cnblogs.com/-maybe/p/4461266.html
Copyright © 2020-2023  润新知