To The Max
Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1
8 0 -2
Sample Output
15
就是给一个n*n的矩阵,求出它的最大子矩阵
我们都做过求一个序列的最大子序列吧。O(n)的复杂度。
这道题就是那道题转化一下。
暴力枚举第k1行到第k2行每一列各个元素的和sum[i],然后对sum[i]进行一次最大子序列求和
然后不断更新答案
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 5 using namespace std; 6 7 const int maxn=105; 8 9 int a[maxn][maxn]; 10 int sum[maxn]; 11 int dp[maxn]; 12 13 int main() 14 { 15 int n; 16 while(scanf("%d",&n)!=EOF) 17 { 18 for(int i=1;i<=n;i++) 19 for(int j=1;j<=n;j++) 20 scanf("%d",&a[i][j]); 21 22 int ans=-1000000; 23 24 for(int i=1;i<=n;i++) 25 { 26 memset(dp,0,sizeof(dp)); 27 memset(sum,0,sizeof(sum)); 28 for(int j=i;j<=n;j++) 29 { 30 for(int k=1;k<=n;k++) 31 { 32 sum[k]+=a[j][k]; 33 } 34 35 for(int k=1;k<=n;k++) 36 { 37 dp[k]=max(dp[k-1],0)+sum[k]; 38 if(dp[k]>ans) 39 ans=dp[k]; 40 } 41 42 } 43 } 44 45 printf("%d ",ans); 46 } 47 48 return 0; 49 }