题解:
带下界的费用流
对于x->y边权为z Addedge(x,t,1,0) Addedge(s,y,1,z) Addedge(x,y,inf,0)
然后对每个点Addedge(i,1,inf,0)
然后跑最小费用最大流即可
因为这是DAG,所以每一个循环流都是从1到某个点再到1的路径
也就是说用几个费用最小的循环流来满足下界
#include<iostream> #include<cstdio> #include<cstring> #include<vector> #include<queue> using namespace std; const int maxn=3000; const int oo=1000000000; int n; struct Edge{ int from,to,cap,flow,cost; }; vector<int>G[maxn]; vector<Edge>edges; void Addedge(int x,int y,int z,int w){ Edge e; e.from=x;e.to=y;e.cap=z;e.flow=0;e.cost=w; edges.push_back(e); e.from=y;e.to=x;e.cap=0;e.flow=0;e.cost=-w; edges.push_back(e); int c=edges.size(); G[x].push_back(c-2); G[y].push_back(c-1); } int s,t,totn; int inq[maxn]; int d[maxn]; int pre[maxn]; queue<int>q; int Spfa(int &nowflow,int &nowcost){ for(int i=1;i<=totn;++i){ inq[i]=0;d[i]=oo; } d[s]=0;inq[s]=1;q.push(s); while(!q.empty()){ int x=q.front();q.pop();inq[x]=0; for(int i=0;i<G[x].size();++i){ Edge e=edges[G[x][i]]; if((e.cap>e.flow)&&(d[x]+e.cost<d[e.to])){ d[e.to]=d[x]+e.cost; pre[e.to]=G[x][i]; if(!inq[e.to]){ inq[e.to]=1; q.push(e.to); } } } } if(d[t]==oo)return 0; int x=t,f=oo; while(x!=s){ Edge e=edges[pre[x]]; f=min(f,e.cap-e.flow); x=e.from; } nowflow+=f;nowcost+=f*d[t]; x=t; while(x!=s){ edges[pre[x]].flow+=f; edges[pre[x]^1].flow-=f; x=edges[pre[x]].from; } return 1; } int Mincost(){ int flow=0,cost=0; while(Spfa(flow,cost)){ } return cost; } int main(){ scanf("%d",&n); s=n+1;t=n+2;totn=t; for(int i=1;i<=n;++i){ int m;scanf("%d",&m); Addedge(i,t,m,0); while(m--){ int y,z; scanf("%d%d",&y,&z); // Addedge(i,y,oo,z); Addedge(s,y,1,z); } } for(int i=2;i<=n;++i)Addedge(i,1,oo,0); printf("%d ",Mincost()); return 0; }