• Sum Of Gcd(hdu 4676)


    Sum Of Gcd

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 738    Accepted Submission(s): 333


    Problem Description
    Given you a sequence of number a1, a2, ..., an, which is a permutation of 1...n.
    You need to answer some queries, each with the following format:
    Give you two numbers L, R, you should calculate sum of gcd(a[i], a[j]) for every L <= i < j <= R.
     
    Input
    First line contains a number T(T <= 10),denote the number of test cases.
    Then follow T test cases.
    For each test cases,the first line contains a number n(1<=n<= 20000).
    The second line contains n number a1,a2,...,an.
    The third line contains a number Q(1<=Q<=20000) denoting the number of queries.
    Then Q lines follows,each lines contains two integer L,R(1<=L<=R<=n),denote a query.
     
    Output
    For each case, first you should print "Case #x:", where x indicates the case number between 1 and T.
    Then for each query print the answer in one line.
     
    Sample Input
    1 5 3 2 5 4 1 3 1 5 2 4 3 3
     
    Sample Output
    Case #1: 11 4 0
     思路:莫比乌兹反演+莫队;
     
    然后后面的s(d)就是欧拉函数;
    然后用莫队算法维护下;
      1 #include<stdio.h>
      2 #include<algorithm>
      3 #include<iostream>
      4 #include<string.h>
      5 #include<math.h>
      6 #include<queue>
      7 #include<vector>
      8 #include<stack>
      9 #include<set>
     10 using namespace std;
     11 typedef long long LL;
     12 int ans[100000];
     13 int mul[100000];
     14 typedef struct node
     15 {
     16     int l;
     17     int r;
     18     int id;
     19 } ss;
     20 ss ask[100000];
     21 bool cmp1(node p,node q)
     22 {
     23     return p.l < q.l;
     24 }
     25 bool cmp2(node p,node q)
     26 {
     27     return p.r < q.r;
     28 }
     29 bool prime[30000];
     30 int prime_table[30000];
     31 vector<int>vec[30000];
     32 int cnt[20005];
     33 LL answ[30000];
     34 int oula[20005];
     35 void _slove_mo(int n,int m);
     36 int main(void)
     37 {
     38     int n,m;
     39     int T;
     40     int __ca = 0;
     41     int cn = 0;
     42     mul[1] = 1;
     43     int i,j;
     44     memset(prime,0,sizeof(prime));
     45     for(i = 0; i <= 20000; i++)
     46         oula[i] = i;
     47     for(i = 2; i <= 20000; i++)
     48     {
     49         if(!prime[i])
     50         {
     51             prime_table[cn++] = i;
     52             mul[i] = -1;
     53         }
     54         for(j = 0; j < cn&&(i*prime_table[j]<=20000); j++)
     55         {
     56             if(i%prime_table[j])
     57             {
     58                 prime[i*prime_table[j]] = true;
     59                 mul[i*prime_table[j]] = -mul[i];
     60             }
     61             else
     62             {
     63                 prime[i*prime_table[j]] = true;
     64                 mul[i*prime_table[j]] = 0;
     65                 break;
     66             }
     67         }
     68     }//printf("%d
    ",cn);
     69     for(i = 0; i < cn; i++)
     70     {
     71         for(j = 1; j*prime_table[i]<=20000; j++)
     72         {
     73             oula[j*prime_table[i]]/=prime_table[i];
     74             oula[j*prime_table[i]]*=(prime_table[i]-1);
     75         }
     76     }
     77     for(i = 1; i <= 20000; i++)
     78     {
     79         for(j = 1; j <= sqrt(i); j++)
     80         {
     81             if(i%j==0)
     82             {
     83                 vec[i].push_back(j);
     84                 if(i/j != j)
     85                     vec[i].push_back(i/j);
     86             }
     87         }
     88     }scanf("%d",&T);
     89     while(T--)
     90     {
     91         ++__ca; memset(cnt,0,sizeof(cnt));
     92         scanf("%d",&n);
     93         for(i = 1; i <= n; i++)
     94         {
     95             scanf("%d",&ans[i]);
     96         }
     97         scanf("%d",&m);
     98         for(i = 0; i < m; i++)
     99         {
    100             scanf("%d %d",&ask[i].l,&ask[i].r);
    101             ask[i].id = i;
    102         }
    103         sort(ask,ask+m,cmp1);
    104         int id = 0;
    105         int ak = sqrt(1.0*n)+1;
    106         int v = ak;
    107         for(i = 0; i < m; i++)
    108         {
    109             if(ask[i].l > v)
    110             {
    111                 v += ak;
    112                 sort(ask+id,ask+i,cmp2);
    113                 id = i;
    114             }
    115         }
    116         sort(ask+id,ask+m,cmp2);
    117         _slove_mo(n,m);
    118         printf("Case #%d:
    ",__ca);
    119         for(i = 0; i < m; i++)
    120             printf("%lld
    ",answ[i]);
    121 
    122     }return 0;
    123 }
    124 void _slove_mo(int n,int m)
    125 {
    126     int i,j;
    127     LL sum = 0;
    128     int xl = ask[0].l;
    129     int xr = ask[0].r;
    130     for(i = xl; i <= xr; i++)
    131     {
    132         for(j = 0; j < vec[ans[i]].size(); j++)
    133         {   int x = vec[ans[i]][j];
    134             sum = sum + (LL)oula[x]*(LL)cnt[x];
    135             cnt[x]++;
    136         }
    137     }
    138     answ[ask[0].id] = sum;
    139     for(i = 1; i < m; i++)
    140     {
    141         while(xl < ask[i].l)
    142         {
    143             int y = ans[xl];
    144             for(j = 0; j < vec[y].size(); j++)
    145             {
    146                 int x = vec[y][j];
    147                 sum -= (LL)oula[x]*(LL)(--cnt[x]);
    148             }
    149             xl++;
    150         }
    151         while(xl > ask[i].l)
    152         {
    153             xl--;
    154             int y = ans[xl];
    155             for(j = 0; j < vec[y].size(); j++)
    156             {
    157                 int x = vec[y][j];
    158                 sum += (LL)oula[x]*(LL)(cnt[x]++);
    159             }
    160         }
    161         while(xr > ask[i].r)
    162         {
    163             int y = ans[xr];
    164             for(j = 0; j < vec[y].size(); j++)
    165             {
    166                 int x = vec[y][j];
    167                 sum -= (LL)oula[x]*(LL)(--cnt[x]);
    168             }
    169             xr--;
    170         }
    171         while(xr < ask[i].r)
    172         {
    173             xr++;
    174             int y = ans[xr];
    175             for(j = 0; j < vec[y].size(); j++)
    176             {
    177                 int x = vec[y][j];
    178                 sum += (LL)oula[x]*(LL)(cnt[x]++);
    179             }
    180         }
    181         answ[ask[i].id] = sum;
    182     }
    183 }
  • 相关阅读:
    继承与组合关系
    sql decimal & float & celling 介绍
    EFDB 基本规范&知识
    html 5 video
    screen printing
    javascript array
    angular router ui bug !
    angular destroy & jquery destroy
    Google addword 策略
    规范 : angular ui router path & params
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/6041033.html
Copyright © 2020-2023  润新知