• Another kind of Fibonacci(hdu3306)


    Another kind of Fibonacci

    Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2353    Accepted Submission(s): 936


    Problem Description
    As we all known , the Fibonacci series : F(0) = 1, F(1) = 1, F(N) = F(N - 1) + F(N - 2) (N >= 2).Now we define another kind of Fibonacci : A(0) = 1 , A(1) = 1 , A(N) = X * A(N - 1) + Y * A(N - 2) (N >= 2).And we want to Calculate S(N) , S(N) = A(0)2 +A(1)2+……+A(n)2.

     
    Input
    There are several test cases.
    Each test case will contain three integers , N, X , Y .
    N : 2<= N <= 231 – 1
    X : 2<= X <= 231– 1
    Y : 2<= Y <= 231 – 1
     
    Output
    For each test case , output the answer of S(n).If the answer is too big , divide it by 10007 and give me the reminder.
     
    Sample Input
    2 1 1
    3 2 3
     
    Sample Output
    6
    196
     思路:矩阵快速幂;
    S(n) = ∑f(n)2 = S(n-1)+f(n)2 = S(n-1)+x2f(n-1)2+y2f(n-2)2+2xyf(n-1)f(n-2);
    然后f(n)*f(n-1) = (x*f(n-1)+y*f(n-2))*f(n-1) = x*f(n-1)2+y*f(n-1)*f(n-2);
    然后构造矩阵;这里写图片描述
    其中的第三个矩阵写错了,应该是s[n-1];     f[n-1]^2;     f[n-2]^2;  f[n-1]*f[n-2];
     1 #include<stdio.h>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<string.h>
     5 #include<queue>
     6 #include<set>
     7 #include<math.h>
     8 #include<map>
     9 using namespace std;
    10 typedef struct node
    11 {
    12         int m[4][4];
    13         node()
    14         {
    15                 memset(m,0,sizeof(m));
    16         }
    17 } maxtr;
    18 void Init(maxtr *ans,int x,int y);
    19 maxtr E();
    20 maxtr quick_m(maxtr ak,int m);
    21 const int mod = 10007;
    22 int main(void)
    23 {
    24         int n,x,y;
    25         while(scanf("%d %d %d",&n,&x,&y)!=EOF)
    26         {
    27                 int f1 = 2;
    28                 int a1 = 1;
    29                 int a0 = 1;
    30                 int xx = 1;
    31                 maxtr ask ;
    32                 Init(&ask,x,y);
    33                 maxtr tp = quick_m(ask,n-1);
    34                 printf("%d
    ",(tp.m[0][0]*2+tp.m[0][1]*a1+tp.m[0][2]*a0+tp.m[0][3]*xx)%mod);
    35         }
    36         return 0;
    37 }
    38 void Init(maxtr *ans,int x,int y)
    39 {      memset(ans->m,0,sizeof(ans->m));
    40         x%=mod;y%=mod;
    41         ans->m[0][0] = 1;
    42         ans->m[0][1] = x*x%mod;
    43         ans->m[0][2] = y*y%mod;
    44         ans->m[0][3] =2*x*y%mod;
    45         ans->m[1][1] = x*x%mod;
    46         ans->m[1][2] = y*y%mod;
    47         ans->m[1][3] = 2*x*y%mod;
    48         ans->m[2][1] = 1;
    49         ans->m[3][1] = x%mod;
    50         ans->m[3][3] = y%mod;
    51 }
    52 maxtr E()
    53 {
    54         maxtr ak;
    55         int i,j;
    56         for(i = 0; i < 4; i++)
    57         {
    58                 for(j = 0; j < 4; j++)
    59                 {
    60                         if(i == j)
    61                                 ak.m[i][j]  = 1;
    62                 }
    63         }
    64         return ak;
    65 }
    66 maxtr quick_m(maxtr ak,int m)
    67 {
    68         int i,j;
    69         maxtr ac = E();
    70         while(m)
    71         {
    72                 if(m&1)
    73                 {
    74                         maxtr a;
    75                         for(i = 0; i < 4; i++)
    76                                 for(j = 0; j < 4; j++)
    77                                         for(int s= 0; s < 4; s++)
    78                                                 a.m[i][j] = (a.m[i][j] + ak.m[i][s]*ac.m[s][j]%mod)%mod;
    79                         ac = a;
    80                 }
    81                 maxtr b;
    82                 for(i = 0; i < 4; i++)
    83                         for(j = 0; j < 4; j++)
    84                                 for(int s = 0; s < 4; s++)
    85                                         b.m[i][j] = (b.m[i][j] + ak.m[i][s]*ak.m[s][j]%mod)%mod;
    86                 ak = b;
    87                 m>>=1;
    88         }
    89         return ac;
    90 }
    油!油!you@
  • 相关阅读:
    GPU上的随机森林:比Apache Spark快2000倍
    基于TensorFlow2.x的实时多人二维姿势估计
    用code2vec、glow和spaCy进行词嵌入
    如何进行数据科学竞赛?(EDA)
    Python性能分析技巧
    PyTorch中基于TPU的FastAI多类图像分类
    GitHub上的AutoML
    Keras vs PyTorch vs Caffe:CNN实现对比
    深度学习的学习率调节实践
    win7下MariaDB10.0的my.ini配置文件的位置
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5929026.html
Copyright © 2020-2023  润新知