Yash has recently learnt about the Fibonacci sequence and is very excited about it. He calls a sequence Fibonacci-ish if
- the sequence consists of at least two elements
- f0 and f1 are arbitrary
- fn + 2 = fn + 1 + fn for all n ≥ 0.
You are given some sequence of integers a1, a2, ..., an. Your task is rearrange elements of this sequence in such a way that its longest possible prefix is Fibonacci-ish sequence.
The first line of the input contains a single integer n (2 ≤ n ≤ 1000) — the length of the sequence ai.
The second line contains n integers a1, a2, ..., an (|ai| ≤ 109).
Print the length of the longest possible Fibonacci-ish prefix of the given sequence after rearrangement.
3
1 2 -1
3
5
28 35 7 14 21
4
In the first sample, if we rearrange elements of the sequence as - 1, 2, 1, the whole sequence ai would be Fibonacci-ish.
In the second sample, the optimal way to rearrange elements is , , , , 28.
思路:直接暴力枚举前两个元素,然后先离散化下,并用map一一对应下数值,开个数组记录各个值的个数,然后根据斐波那契数列依次推下个数字
在数组中查找,其中开始为0,0需要特判否则复杂度n3;
1 #include<stdio.h> 2 #include<algorithm> 3 #include<iostream> 4 #include<string.h> 5 #include<math.h> 6 #include<queue> 7 #include<map> 8 using namespace std; 9 const long long N=1e9+7; 10 typedef long long LL; 11 LL vv[25]; 12 LL MM[1005]; 13 int NN[1005]; 14 int KK[1005]; 15 map<LL,LL>my; 16 LL quickmi(long long a,long long b); 17 int main(void) 18 { 19 int i,j,k; 20 while(scanf("%d",&k)!=EOF) 21 {memset(NN,0,sizeof(NN)); 22 for(i=0; i<k; i++) 23 { 24 scanf("%I64d",&MM[i]); 25 } 26 int cnt=1;sort(MM,MM+k);my[MM[0]]=1; 27 NN[1]++; 28 for(i=1; i<k; i++) 29 { 30 if(MM[i]!=MM[i-1]) 31 cnt++; 32 NN[cnt]++; 33 my[MM[i]]=cnt; 34 }int maxx=2; 35 for(i=0; i<k; i++) 36 { 37 for(j=0; j<k; j++) 38 {int sum=2; 39 if(i!=j) 40 {int KK[1005]={0};LL p=MM[i];LL q=MM[j]; 41 if(p==0&&q==0) 42 { 43 sum=NN[my[0]]; 44 } 45 else {KK[my[p]]++;KK[my[q]]++; 46 while(true) 47 { 48 LL ans=p+q; 49 KK[my[ans]]++; 50 if(KK[my[ans]]<=NN[my[ans]]) 51 sum++; 52 else break; 53 p=q;q=ans; 54 }} 55 if(sum>maxx) 56 maxx=sum;} 57 } 58 }printf("%d ",maxx); 59 } 60 return 0; 61 } 62 63 LL quickmi(long long a,long long b) 64 { 65 LL sum=1; 66 while(b) 67 { 68 if(b&1) 69 sum=(sum*a)%(N); 70 a=(a*a)%N; 71 b/=2; 72 } 73 return sum; 74 }