• CSV数据(一)


    import csv
    from matplotlib import pyplot as plt

    filename = 'sitka_wather.csv'

    # 打开文件,存储在f中
    with open(filename) as f:
    reader = csv.reader(f)

    # 用next函数获取第一行的值
    header_row = next(reader)
    print(header_row)
    header_two = next(reader) #获取第二行的值
    print(header_two)

    # s对列表使用enumerate()来获取每个元素的索引和值
    # for index,column_header in enumerate(header_row):
    # print(index,column_header)

    #从文件中获取时间和最高气温,并将字符串转换成数字
    highs = []
    for row in reader:
    hight = int(row[1]) #从第二行开始获取数据
    highs.append(hight)
    print(highs)

    # 根据数据绘制图形
    fig = plt.figure(dpi=128,figsize=(5,3))
    # 将温度传给plot()
    plt.plot(highs,c='red')

    # 设置图形的格式
    plt.title("Daily high temperatures,July 2014",fontsize=12)
    plt.xlabel('',fontsize=8)
    fig.autofmt_xdate() #将标签制斜,避免重叠
    plt.ylabel('Temperature(F)',fontsize=8)
    plt.tick_params(axis='both',which='major',labelsize=8)

    plt.show()


    执行如下:



    CSV文件如下:
    AKDT,Max TemperatureF,Mean TemperatureF,Min TemperatureF,Max Dew PointF,MeanDew PointF,Min DewpointF,Max Humidity, Mean Humidity, Min Humidity, Max Sea Level PressureIn, Mean Sea Level PressureIn, Min Sea Level PressureIn, Max VisibilityMiles, Mean VisibilityMiles, Min VisibilityMiles, Max Wind SpeedMPH, Mean Wind SpeedMPH, Max Gust SpeedMPH,PrecipitationIn, CloudCover, Events, WindDirDegrees
    2014/7/1,64,56,50,53,51,48,96,83,58,30.19,30,29.79,10,10,10,7,4,,0,7,,337
    2014/7/2,71,62,55,55,52,46,96,80,51,29.81,29.75,29.66,10,9,2,13,5,,0.14,7,Rain,327
    2014/7/3,64,58,53,55,53,51,97,85,72,29.88,29.86,29.81,10,10,8,15,4,,0.01,6,,258
    2014/7/4,59,56,52,52,51,50,96,88,75,29.91,29.89,29.87,10,9,2,9,2,,0.07,7,Rain,255
    2014/7/5,69,59,50,52,50,46,96,72,49,29.88,29.82,29.79,10,10,10,13,5,,0,6,,110
    2014/7/6,62,58,55,51,50,46,80,71,58,30.13,30.07,29.89,10,10,10,20,10,29,0,6,Rain,213
    2014/7/7,61,57,55,56,53,51,96,87,75,30.1,30.07,30.05,10,9,4,16,4,25,0.14,8,Rain,211
    2014/7/8,55,54,53,54,53,51,100,94,86,30.1,30.06,30.04,10,6,2,12,5,23,0.84,8,Rain,159
    2014/7/9,57,55,53,56,54,52,100,96,83,30.24,30.18,30.11,10,7,2,9,5,,0.13,8,Rain,201
    2014/7/10,61,56,53,53,52,51,100,90,75,30.23,30.17,30.03,10,8,2,8,3,,0.03,8,Rain,215
    2014/7/11,57,56,54,56,54,51,100,94,84,30.02,30,29.98,10,5,2,12,5,,1.28,8,Rain,250
    2014/7/12,59,56,55,58,56,55,100,97,93,30.18,30.06,29.99,10,6,2,15,7,26,0.32,8,Rain,275
    2014/7/13,57,56,55,58,56,55,100,98,94,30.25,30.22,30.18,10,5,1,8,4,,0.29,8,Rain,291
    2014/7/14,61,58,55,58,56,51,100,94,83,30.24,30.23,30.22,10,7,0,16,4,,0.01,8,Fog,307
    2014/7/15,64,58,55,53,51,48,93,78,64,30.27,30.25,30.24,10,10,10,17,12,,0,6,,318
    2014/7/16,61,56,52,51,49,47,89,76,64,30.27,30.23,30.16,10,10,10,15,6,,0,6,,294
    2014/7/17,59,55,51,52,50,48,93,84,75,30.16,30.04,29.82,10,10,6,9,3,,0.11,7,Rain,232
    2014/7/18,63,56,51,54,52,50,100,84,67,29.79,29.69,29.65,10,10,7,10,5,,0.05,6,Rain,299
    2014/7/19,60,57,54,55,53,51,97,88,75,29.91,29.82,29.68,10,9,2,9,2,,0,8,,292
    2014/7/20,57,55,52,54,52,50,94,89,77,29.92,29.87,29.78,10,8,2,13,4,,0.31,8,Rain,155
    2014/7/21,69,60,52,53,51,50,97,77,52,29.99,29.88,29.78,10,10,10,13,4,,0,5,,297
    2014/7/22,63,59,55,56,54,52,90,84,77,30.11,30.04,29.99,10,10,10,9,3,,0,6,Rain,240
    2014/7/23,62,58,55,54,52,50,87,80,72,30.1,30.03,29.96,10,10,10,8,3,,0,7,,230
    2014/7/24,59,57,54,54,52,51,94,84,78,29.95,29.91,29.89,10,9,3,17,4,28,0.06,8,Rain,207
    2014/7/25,57,55,53,55,53,51,100,92,81,29.91,29.87,29.83,10,8,2,13,3,,0.53,8,Rain,141
    2014/7/26,57,55,53,57,55,54,100,96,93,29.96,29.91,29.87,10,8,1,15,5,24,0.57,8,Rain,216
    2014/7/27,61,58,55,55,54,53,100,92,78,30.1,30.05,29.97,10,9,2,13,5,,0.3,8,Rain,213
    2014/7/28,59,56,53,57,54,51,97,94,90,30.06,30,29.96,10,8,2,9,3,,0.61,8,Rain,261
    2014/7/29,61,56,51,54,52,49,96,89,75,30.13,30.02,29.95,10,9,3,14,4,,0.25,6,Rain,153
    2014/7/30,61,57,54,55,53,52,97,88,78,30.31,30.23,30.14,10,10,8,8,4,,0.08,7,Rain,160
    2014/7/31,66,58,50,55,52,49,100,86,65,30.31,30.29,30.26,10,9,3,10,4,,0,3,,217
  • 相关阅读:
    【Git】git使用
    【Git】git使用
    【Git】git使用
    【spring boot】SpringBoot初学(8)– 简单整合redis
    「Flink」使用Managed Keyed State实现计数窗口功能
    「Flink」Flink的状态管理与容错
    「数据挖掘入门序列」数据挖掘模型分类与预测
    「Flink」使用Java lambda表达式实现Flink WordCount
    Java 8 函数式编程
    「数据挖掘入门系列」数据挖掘模型之分类和预测
  • 原文地址:https://www.cnblogs.com/zzl112893/p/9880471.html
Copyright © 2020-2023  润新知