Description
Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
Output
* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
Sample Input
4 6 1 4 2 6 3 12 2 7
Sample Output
23
题目大意:这是一道裸01背包问题,没什么花样,可以当模板题来看。 Bessie去商场买珠宝,她要往手链上镶嵌珠宝,但是有重量限制,每块珠宝有两个属性,重量,价值(珠宝不可切割),问在重量不超额的情况下,价值最高多少。
01背包 属于是贪心中的一个分支,个人认为01背包关键在于状态的保存和更新,即dp【i】的更新。
01背包 01就是指该件物品仅有一件舍或是取(0 or 1)属于背包问题中比较简单的一类,就01背包来讲,有两种方法可解,一维背包和二维背包。
一维状态转移方程(val价值,weight重量,w最大承重,n物品件数)
for(int i=1;i<=n;i++) for(int j=v;j>=weight[i];j--)//这里是关键点,一定要逆序 dp[j]=max(dp[j],dp[j-wegiht[i]]+val[i]);
二维状态转移方程(变量同一维)
dp[i][v]= max(dp[i-1][v], dp[i-1][v-weight[i]]+val[i]);
就这道题,我是用一维过的
代码贴出来
1 #include <iostream> 2 #include<stdio.h> 3 #include<math.h> 4 #include<string.h> 5 #include<algorithm> 6 #include<ctype.h> 7 #include<stdlib.h> 8 #include<vector> 9 #include<queue> 10 using namespace std; 11 #define oo 0x3f3f3f3f 12 #define maxn 20010 13 14 int dp[maxn],weight[maxn],val[maxn]; 15 16 void Init() 17 { 18 memset(dp,0,sizeof(dp)); 19 memset(val,0,sizeof(val)); 20 memset(weight,0,sizeof(weight)); 21 } 22 23 int main() 24 { 25 int n,w; 26 while(scanf("%d%d",&n,&w)!=EOF) 27 { 28 Init(); 29 for(int i=1;i<=n;i++) 30 { 31 scanf("%d%d",&weight[i],&val[i]); 32 } 33 for(int i=1;i<=n;i++) 34 for(int j=w;j>=weight[i];j--) 35 { 36 dp[j]=max(dp[j],dp[j-weight[i]]+val[i]); 37 } 38 printf("%d ",dp[w]); 39 } 40 return 0; 41 }