• Charm Bracelet (01背包)


    Description

    Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).

    Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

    Input

    * Line 1: Two space-separated integers: N and M
    * Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di

    Output

    * Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

    Sample Input

    4 6
    1 4
    2 6
    3 12
    2 7
    Sample Output
    23
    题目大意:这是一道裸01背包问题,没什么花样,可以当模板题来看。 Bessie去商场买珠宝,她要往手链上镶嵌珠宝,但是有重量限制,每块珠宝有两个属性,重量,价值(珠宝不可切割),问在重量不超额的情况下,价值最高多少。

    01背包 属于是贪心中的一个分支,个人认为01背包关键在于状态的保存和更新,即dp【i】的更新。

    01背包 01就是指该件物品仅有一件舍或是取(0 or 1)属于背包问题中比较简单的一类,就01背包来讲,有两种方法可解,一维背包和二维背包。


    一维状态转移方程(val价值,weight重量,w最大承重,n物品件数)

        forint i=1;i<=n;i++for(int j=v;j>=weight[i];j--)//这里是关键点,一定要逆序
                dp[j]=max(dp[j],dp[j-wegiht[i]]+val[i]);
    二维状态转移方程(变量同一维)
      dp[i][v]= max(dp[i-1][v], dp[i-1][v-weight[i]]+val[i]); 

    就这道题,我是用一维过的

    代码贴出来

     1 #include <iostream>
     2 #include<stdio.h>
     3 #include<math.h>
     4 #include<string.h>
     5 #include<algorithm>
     6 #include<ctype.h>
     7 #include<stdlib.h>
     8 #include<vector>
     9 #include<queue>
    10 using namespace std;
    11 #define oo 0x3f3f3f3f
    12 #define maxn 20010
    13 
    14 int dp[maxn],weight[maxn],val[maxn];
    15 
    16 void Init()
    17 {
    18     memset(dp,0,sizeof(dp));
    19     memset(val,0,sizeof(val));
    20     memset(weight,0,sizeof(weight));
    21 }
    22 
    23 int main()
    24 {
    25     int n,w;
    26     while(scanf("%d%d",&n,&w)!=EOF)
    27     {
    28         Init();
    29         for(int i=1;i<=n;i++)
    30         {
    31             scanf("%d%d",&weight[i],&val[i]);
    32         }
    33         for(int i=1;i<=n;i++)
    34             for(int j=w;j>=weight[i];j--)
    35         {
    36             dp[j]=max(dp[j],dp[j-weight[i]]+val[i]);
    37         }
    38         printf("%d
    ",dp[w]);
    39     }
    40     return 0;
    41 }



  • 相关阅读:
    爬取阳光问政平台
    CrawlSpider爬取腾讯招聘信息
    LinkExtractor
    镜像源列表
    screen命令总结
    PHP解决中文乱码问题
    Linux查找大文件或目录
    CentOS6/7系列防火墙管理
    删除win10冗余的服务
    解决win10安装wireshark新版本,欢迎界面卡顿情况
  • 原文地址:https://www.cnblogs.com/zz1164056454/p/5731859.html
Copyright © 2020-2023  润新知