查看的源码为spark2.3
调用ShuffleMapTask的runTask方法
org.apache.spark.scheduler.ShuffleMapTask#runTask
ShuffleMapTask继承了org.apache.spark.scheduler.Task,重写了Task的runTask方法,在该方法中关于shuffle部分主要是获取shuffleManager,然后得到sortShuffleManager,然后再通过manager获取writer,得到sortShuffleWriter,然后调用writer方法
override def runTask(context: TaskContext): MapStatus = { // Deserialize the RDD using the broadcast variable. val threadMXBean = ManagementFactory.getThreadMXBean val deserializeStartTime = System.currentTimeMillis() val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) { threadMXBean.getCurrentThreadCpuTime } else 0L val ser = SparkEnv.get.closureSerializer.newInstance() val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])]( ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader) _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime _executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) { threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime } else 0L //定义writer对象 var writer: ShuffleWriter[Any, Any] = null try {
//获取shuffleManager val manager = SparkEnv.get.shuffleManager
//通过shuffleManager获取Writer对象,这里的partitionId传入的其实是mapId,每个map有个mapId writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
//调用write方法。write方法如下 writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]]) writer.stop(success = true).get } catch { case e: Exception => try { if (writer != null) { writer.stop(success = false) } } catch { case e: Exception => log.debug("Could not stop writer", e) } throw e } }
调用SortShuffleWriter的write方法
org.apache.spark.shuffle.sort.SortShuffleWriter#write
SortShuffleWriter继承了org.apache.spark.shuffle.ShuffleWriter并重写了其write方法
/** Write a bunch of records to this task's output */ override def write(records: Iterator[Product2[K, V]]): Unit = { //根据是否存在map端聚合获取ExternalSorter对象(sorter) sorter = if (dep.mapSideCombine) { require(dep.aggregator.isDefined, "Map-side combine without Aggregator specified!") new ExternalSorter[K, V, C]( context, dep.aggregator, Some(dep.partitioner), dep.keyOrdering, dep.serializer) } else { // In this case we pass neither an aggregator nor an ordering to the sorter, because we don't // care whether the keys get sorted in each partition; that will be done on the reduce side // if the operation being run is sortByKey.如果没有map-side聚合,那么创建sorter对象时候,aggregator和ordering将不传入对应的值 new ExternalSorter[K, V, V]( context, aggregator = None, Some(dep.partitioner), ordering = None, dep.serializer) }
//通过insertAll方法先写数据到buffer sorter.insertAll(records) // Don't bother including the time to open the merged output file in the shuffle write time, // because it just opens a single file, so is typically too fast to measure accurately // (see SPARK-3570).
//通过blockManager获取对应mapId.shuffleId的文件输出路径 val output = shuffleBlockResolver.getDataFile(dep.shuffleId, mapId)
//返回与“path”位于同一目录中的临时文件的路径。 val tmp = Utils.tempFileWith(output) try { val blockId = ShuffleBlockId(dep.shuffleId, mapId, IndexShuffleBlockResolver.NOOP_REDUCE_ID)
//将所有的数据合并到一个文件中 val partitionLengths = sorter.writePartitionedFile(blockId, tmp)
//生成index文件,也就是每个reduce通过该index文件得知它哪些是属于它的数据 shuffleBlockResolver.writeIndexFileAndCommit(dep.shuffleId, mapId, partitionLengths, tmp) mapStatus = MapStatus(blockManager.shuffleServerId, partitionLengths) } finally { if (tmp.exists() && !tmp.delete()) { logError(s"Error while deleting temp file ${tmp.getAbsolutePath}") } } }
ExternalSorter类
创建ExternalSorter对象时,各参数对应的意思。
class ExternalSorter[K, V, C]( context: TaskContext, aggregator: Option[Aggregator[K, V, C]] = None, partitioner: Option[Partitioner] = None, ordering: Option[Ordering[K]] = None, serializer: Serializer = SparkEnv.get.serializer) aggregator:在RDD shuffle时,map/reduce-side使用的aggregator partitioner:对shuffle的输出,使用哪种partitioner对数据做分区,比如hashPartitioner或者rangePartitioner ordering:根据哪个key做排序 serializer:使用哪种序列化,如果没有显示指定,默认使用spark.serializer参数值
从一个high level的角度看ExternalSorter到底做了什么?
第一:反复的将数据填充到内存buffer中(如果需要通过key做map-side聚合,则使用PartitionedAppendOnlyMap;如果不需要,则使用PartitionedPairBuffer),如下
// Data structures to store in-memory objects before we spill. Depending on whether we have an // Aggregator set, we either put objects into an AppendOnlyMap where we combine them, or we // store them in an array buffer. @volatile private var map = new PartitionedAppendOnlyMap[K, C] @volatile private var buffer = new PartitionedPairBuffer[K, C]
第二:在buffer中,通过key计算partition ID,通过partition ID对数据进行排序(partition ID可以理解为reduce ID,意思就是数据被分给了哪个reduce),为了避免对key调用多次partitioner,spark会将partition ID跟每一条数据一起存储。
第三:当buffer达到内存限制时(buffer默认大小32k,由spark.shuffle.file.buffer参数决定),会将buffer中的数据spill到文件中(每次spill都会生成一个文件),如果我们需要做map-side聚合,该文件生成时会通过partition ID先做排序,然后通过key或者key的hashcode值做二次排序。
第四:将spill形成的多个文件合并包括还在内存中的数据,文件合并时候将会排序,排序方式跟上面一样,生成数据文件dataFile以及索引文件indexFile
第五:最后调用stop方法,删除所有中间文件
结合下图更好理解
mapTask通过externalSorter生成多个文件,也就是fileSegment,最后每个map任务的所有filesegment将会合并成一个file
上图数据插入的是appendOnlyMap,也就是使用了map-side聚合,所以有merger value,appendOnlyMap在满了以后(默认32k)将spill成文件,多次spill生成多个文件,最后merge所有文件包括还在内存buffer中的数据。
调用ExternalSorter的insertAll方法
这一步主要是往buffer写数据,对数据分partition ID,buffer满了spill数据到磁盘且对数据排序
def insertAll(records: Iterator[Product2[K, V]]): Unit = { // TODO: stop combining if we find that the reduction factor isn't high如果合并比例不高的话,就不会继续合并了 // 通过创建ExternalSorter对象时传入的aggregator获取是否存在合并 val shouldCombine = aggregator.isDefined if (shouldCombine) { // Combine values in-memory first using our AppendOnlyMap val mergeValue = aggregator.get.mergeValue val createCombiner = aggregator.get.createCombiner var kv: Product2[K, V] = null val update = (hadValue: Boolean, oldValue: C) => { //合并值方式 if (hadValue) mergeValue(oldValue, kv._2) else createCombiner(kv._2) } while (records.hasNext) { addElementsRead() kv = records.next() //这个map就是该类中定义的PartitionedAppendOnlyMap,getPartition方法通过key获取所属Partition ID(hashPartitioner) map.changeValue((getPartition(kv._1), kv._1), update) // buffer满的话将内存中的数据spill成文件 maybeSpillCollection(usingMap = true) } } else { // Stick values into our buffer while (records.hasNext) { addElementsRead() val kv = records.next() //这个buffer就是该类中定义的PartitionedPairBuffer buffer.insert(getPartition(kv._1), kv._1, kv._2.asInstanceOf[C]) maybeSpillCollection(usingMap = false) } } }
insertAll方法中调用maybeSpillCollection方法
/** * Spill the current in-memory collection to disk if needed. * * @param usingMap whether we're using a map or buffer as our current in-memory collection * 不同的数据结构(也就是buffer)调用不同的方法 */ private def maybeSpillCollection(usingMap: Boolean): Unit = { var estimatedSize = 0L if (usingMap) { estimatedSize = map.estimateSize()
//maybeSpill方法会尝试申请buffer内存,如果申请到内存,则spill且返回false。否则true if (maybeSpill(map, estimatedSize)) {
//appendOnlyMap的数据spill以后,创建一个新的appendOnlyMap map = new PartitionedAppendOnlyMap[K, C] } } else { estimatedSize = buffer.estimateSize() if (maybeSpill(buffer, estimatedSize)) { buffer = new PartitionedPairBuffer[K, C] } } if (estimatedSize > _peakMemoryUsedBytes) { _peakMemoryUsedBytes = estimatedSize } }
maybeSpillCollection方法中调用maybeSpill方法,判断是否应该执行spill
/** * Spills the current in-memory collection to disk if needed. Attempts to acquire more * memory before spilling. * 在spill之前会尝试申请内存,最后才判断是否真正执行spill * @param collection collection to spill to disk * @param currentMemory estimated size of the collection in bytes * @return true if `collection` was spilled to disk; false otherwise */ protected def maybeSpill(collection: C, currentMemory: Long): Boolean = { var shouldSpill = false if (elementsRead % 32 == 0 && currentMemory >= myMemoryThreshold) { // Claim up to double our current memory from the shuffle memory pool;从上次spill以后,每读取32个元素判断一次,声明申请额外内存 val amountToRequest = 2 * currentMemory - myMemoryThreshold val granted = acquireMemory(amountToRequest) myMemoryThreshold += granted // If we were granted too little memory to grow further (either tryToAcquire returned 0, // or we already had more memory than myMemoryThreshold), spill the current collection shouldSpill = currentMemory >= myMemoryThreshold } shouldSpill = shouldSpill || _elementsRead > numElementsForceSpillThreshold // Actually spill if (shouldSpill) { _spillCount += 1 logSpillage(currentMemory) spill(collection) _elementsRead = 0 _memoryBytesSpilled += currentMemory releaseMemory() } shouldSpill }
1