• 玉米田(cowfood)


    题意/Description:

           农民 John 购买了一处肥沃的矩形牧场,分成M*N(1 <= M <= 12; 1 <= N <= 12)个格子。他想在那里的一些格子中种植美味的玉米。遗憾的是,有些格子区域的土地是贫瘠的,不能耕种。精明的 FJ 知道奶牛们进食时不喜欢和别的牛相邻,所以一旦在一个格子中种植玉米,那么他就不会在相邻的格子中种植,即没有两个被选中的格子拥有公共边。他还没有最终确定哪些格子要选择种植玉米。

           作为一个思想开明的人,农民 John 希望考虑所有可行的选择格子种植方案。由于太开明,他还考虑一个格子都不选择的种植方案!请帮助农民 John 确定种植方案总数。

     

    读入/Input

           Line 1: 两个用空格分隔的整数 M 和 N
      Lines 2..M+1: 第 i+1 行描述牧场第i行每个格子的情况, N 个用空格分隔的整数,表示 这个格子是否可以种植(1 表示肥沃的、适合种植,0 表示贫瘠的、不可种植)

     

    输出/Output

           Line 1: 一个整数: FJ 可选择的方案总数 除以 100,000,000 的余数。

     

    题解/solution

           看到n,m<=12,可以考虑一下状压DP。

           因为M,N <=12 所以可以用一个longint来表示一行的状态。
           就可以用 f[i][nm] 表示第i行,状态是nm的时候的方案数。
           然后’2^12*2^12’枚举转移,判断一下是否可以转移。
           ∑dp[n][i]为答案。

     

    代码/Code

    var
      n,m,nm,ans:longint;
      a:array [0..13] of longint;
      f:array [0..13,0..5001] of longint;
    procedure init;
    var
      i,j,z:longint;
    begin
      readln(n,m);
      for i:=1 to n do
        for j:=1 to m do
          begin
            read(z);
            a[i]:=a[i] shl 1+z;
          end;
      nm:=(1 shl m)-1;
    end;
    
    procedure main;
    var
      i,j,k:longint;
    begin
      for i:=0 to nm do
        if ((i and (i shr 1))=0) and (i or a[1]=a[1]) then
          f[1,i]:=1;
      for i:=2 to n do
        for j:=0 to nm do
          if f[i-1,j]<>0 then
            for k:=0 to nm do
              if (j and k=0) and (k or a[i]=a[i]) and (k and (k shr 1)=0) then
                f[i,k]:=(f[i,k]+f[i-1,j]) mod 100000000;
      for i:=0 to nm do
        ans:=(ans+f[n,i]) mod 100000000;
    end;
    
    begin
      init;
      main;
      write(ans);
    end.



  • 相关阅读:
    net 反射30分钟速成
    Net is as typeof 运行运算符详解
    net 自定义泛型那点事
    博客搬家啦!
    Root(hdu5777+扩展欧几里得+原根)2015 Multi-University Training Contest 7
    原根(扩展欧几里得+欧拉函数)
    2015 Multi-University Training Contest 6 solutions BY ZJU(部分解题报告)
    博弈之——SG模板
    点到圆弧的距离(csu1503)+几何
    Integer Partition(hdu4658)2013 Multi-University Training Contest 6 整数拆分二
  • 原文地址:https://www.cnblogs.com/zyx-crying/p/9319624.html
Copyright © 2020-2023  润新知