• 点到圆弧的距离(csu1503)+几何


    1503: 点到圆弧的距离

    Time Limit: 1 Sec  Memory Limit: 128 MB  Special Judge
    Submit: 325  Solved: 70
    [Submit][Status][Web Board]

    Description

    输入一个点P和一条圆弧(圆周的一部分),你的任务是计算P到圆弧的最短距离。换句话说,你需要在圆弧上找一个点,到P点的距离最小。
    提示:请尽量使用精确算法。相比之下,近似算法更难通过本题的数据。

    Input

    输入包含最多10000组数据。每组数据包含8个整数x1, y1, x2, y2, x3, y3, xp, yp。圆弧的起点是A(x1,y1),经过点B(x2,y2),结束位置是C(x3,y3)。点P的位置是 (xp,yp)。输入保证A, B, C各不相同且不会共线。上述所有点的坐标绝对值不超过20。

    Output

    对于每组数据,输出测试点编号和P到圆弧的距离,保留三位小数。你的输出和标准输出之间最多能有0.001的误差。

    Sample Input

    0 0 1 1 2 0 1 -1
    3 4 0 5 -3 4 0 1

    Sample Output

    Case 1: 1.414
    Case 2: 4.000

    HINT

     

    Source

     
    思路:根据三点确定圆心和半径;关键是确定扇形区域(尤其是优弧)
     
     
     
     
    确定点在扇形区域就分两种情况,在圆内和圆外;不在扇形区域就是min(到A,到C)距离最短的;
     
     
    转载请注明出处:寻找&星空の孩子 
     
     
    具体见代码:
     
      1 #include<stdio.h>
      2 #include<math.h>
      3 #define PI acos(-1.0)
      4 #include<algorithm>
      5 using namespace std;
      6 struct Point
      7 {
      8     double x;
      9     double y;
     10     Point(double x=0,double y=0):x(x),y(y) {} //构造函数,方便代码编写
     11 } pt;
     12 struct Traingle
     13 {
     14     struct Point p[3];
     15 } Tr;
     16 struct Circle
     17 {
     18     struct Point center;
     19     double r;
     20 } ans;
     21 //计算两点距离
     22 double Dis(struct Point p, struct Point q)
     23 {
     24     double dx=p.x-q.x;
     25     double dy=p.y-q.y;
     26     return sqrt(dx*dx+dy*dy);
     27 }
     28 //计算三角形面积
     29 double Area(struct Traingle ct)
     30 {
     31     return fabs((ct.p[1].x-ct.p[0].x)*(ct.p[2].y-ct.p[0].y)-(ct.p[2].x-ct.p[0].x)*(ct.p[1].y-ct.p[0].y))/2.0;
     32 }
     33 //求三角形的外接圆,返回圆心和半径(存在结构体"圆"中)
     34 struct Circle CircumCircle(struct Traingle t)
     35 {
     36     struct Circle tmp;
     37     double a, b, c, c1, c2;
     38     double xA, yA, xB, yB, xC, yC;
     39     a = Dis(t.p[0], t.p[1]);
     40     b = Dis(t.p[1], t.p[2]);
     41     c = Dis(t.p[2], t.p[0]);
     42 //根据 S = a * b * c / R / 4;求半径 R
     43     tmp.r = (a*b*c)/(Area(t)*4.0);
     44     xA = t.p[0].x;
     45     yA = t.p[0].y;
     46     xB = t.p[1].x;
     47     yB = t.p[1].y;
     48     xC = t.p[2].x;
     49     yC = t.p[2].y;
     50     c1 = (xA*xA+yA*yA - xB*xB-yB*yB) / 2;
     51     c2 = (xA*xA+yA*yA - xC*xC-yC*yC) / 2;
     52     tmp.center.x = (c1*(yA - yC)-c2*(yA - yB)) / ((xA - xB)*(yA - yC)-(xA - xC)*(yA - yB));
     53     tmp.center.y = (c1*(xA - xC)-c2*(xA - xB)) / ((yA - yB)*(xA - xC)-(yA - yC)*(xA - xB));
     54     return tmp;
     55 }
     56 
     57 typedef Point Vector;
     58 
     59 
     60 Vector operator + (Vector A,Vector B)
     61 {
     62     return Vector(A.x+B.x,A.y+B.y);
     63 }
     64 
     65 
     66 Vector operator - (Point A,Point B)
     67 {
     68     return Vector(A.x-B.x,A.y-B.y);
     69 }
     70 
     71 
     72 Vector operator * (Vector A,double p)
     73 {
     74     return Vector(A.x*p,A.y*p);
     75 }
     76 
     77 
     78 Vector operator / (Vector A,double p)
     79 {
     80     return Vector(A.x/p,A.y/p);
     81 }
     82 
     83 
     84 bool operator < (const Point& a,const Point& b)
     85 {
     86     return a.x<b.x||(a.x==b.x && a.y<b.y);
     87 }
     88 
     89 
     90 const double eps = 1e-10;
     91 
     92 int dcmp(double x)
     93 {
     94     if(fabs(x)<eps)return 0;
     95     else return x < 0 ? -1 : 1;
     96 }
     97 bool operator == (const Point& a,const Point& b)
     98 {
     99     return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0;
    100 }
    101 
    102 double Dot(Vector A,Vector B)
    103 {
    104     return A.x*B.x+A.y*B.y;
    105 }
    106 double length(Vector A)
    107 {
    108     return sqrt(Dot(A,A));
    109 }
    110 double Angle(Vector A,Vector B)
    111 {
    112     return acos(Dot(A,B)/length(A)/length(B));
    113 }
    114 
    115 
    116 double Cross(Vector A,Vector B)
    117 {
    118     return A.x*B.y-B.x*A.y;
    119 }
    120 double Area2(Point A,Point B,Point C)
    121 {
    122     return Cross(B-A,C-A);
    123 }
    124 double len;
    125 
    126 int main()
    127 {
    128     int ca=1;
    129     while(scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&Tr.p[0].x,&Tr.p[0].y,&Tr.p[1].x,&Tr.p[1].y,&Tr.p[2].x,&Tr.p[2].y,&pt.x,&pt.y)!=EOF)
    130     {
    131         //      printf("%lf %lf
    %lf %lf
    %lf %lf
    %lf %lf
    ",Tr.p[0].x,Tr.p[0].y,Tr.p[1].x,Tr.p[1].y,Tr.p[2].x,Tr.p[2].y,pt.x,pt.y);
    132         Circle CC=CircumCircle(Tr);
    133         //      printf("%lf %lf,r=%lf",CC.center.x,CC.center.y,CC.r);
    134         Point A(Tr.p[0].x,Tr.p[0].y),O(CC.center.x,CC.center.y),C(Tr.p[2].x,Tr.p[2].y),D(pt.x,pt.y),B(Tr.p[1].x,Tr.p[1].y);
    135 
    136         Vector OA(A-O),OB(B-O),OC(C-O),OD(D-O);
    137         if(Cross(OA,OB)<=0&&Cross(OB,OC)<=0||Cross(OA,OB)>=0&&Cross(OB,OC)<0&&Cross(OA,OC)>0||Cross(OA,OB)<0&&Cross(OB,OC)>=0&&Cross(OA,OC)>0)//
    138         {
    139             if(Cross(OA,OD)<=0&&Cross(OD,OC)<=0||Cross(OA,OD)>=0&&Cross(OD,OC)<0&&Cross(OA,OC)>0||Cross(OA,OD)<0&&Cross(OD,OC)>=0&&Cross(OA,OC)>0)
    140             {
    141                 len=fabs(length(D-O));
    142                 if(len<=CC.r) len=CC.r-len;
    143                 else len=len-CC.r;
    144             }
    145             else
    146             {
    147                 len=min(fabs(length(A-D)),fabs(length(C-D)));
    148             }
    149         }
    150         else if(Cross(OA,OB)>=0&&Cross(OB,OC)>=0||Cross(OA,OB)>0&&Cross(OB,OC)<=0&&Cross(OA,OC)<0||Cross(OA,OB)<=0&&Cross(OB,OC)>0&&Cross(OA,OC)<0)//
    151         {
    152             if(Cross(OA,OD)>=0&&Cross(OD,OC)>=0||Cross(OA,OD)>0&&Cross(OD,OC)<=0&&Cross(OA,OC)<0||Cross(OA,OD)<=0&&Cross(OD,OC)>0&&Cross(OA,OC)<0)
    153             {
    154                 len=fabs(length(D-O));
    155                 if(len<=CC.r) len=CC.r-len;
    156                 else len=len-CC.r;
    157             }
    158             else
    159             {
    160                 len=min(fabs(length(A-D)),fabs(length(C-D)));
    161             }
    162         }
    163 
    164         printf("Case %d: %0.3f
    ",ca++,len);
    165     }
    166     return 0;
    167 }
    168 /*
    169 0 0 1 1 2 0 1 -1
    170 3 4 0 5 -3 4 0 1
    171 0 0 1 1 1 -1 0 -1
    172 */
     
  • 相关阅读:
    Swift
    Swift
    Swift
    Swift
    Swift
    Swift
    Swift
    Swift
    Swift
    算法の序列
  • 原文地址:https://www.cnblogs.com/yuyixingkong/p/4690802.html
Copyright © 2020-2023  润新知