1503: 点到圆弧的距离
Time Limit: 1 Sec Memory Limit: 128 MB Special JudgeSubmit: 325 Solved: 70
[Submit][Status][Web Board]
Description
输入一个点P和一条圆弧(圆周的一部分),你的任务是计算P到圆弧的最短距离。换句话说,你需要在圆弧上找一个点,到P点的距离最小。
提示:请尽量使用精确算法。相比之下,近似算法更难通过本题的数据。
Input
输入包含最多10000组数据。每组数据包含8个整数x1, y1, x2, y2, x3, y3, xp, yp。圆弧的起点是A(x1,y1),经过点B(x2,y2),结束位置是C(x3,y3)。点P的位置是 (xp,yp)。输入保证A, B, C各不相同且不会共线。上述所有点的坐标绝对值不超过20。
Output
对于每组数据,输出测试点编号和P到圆弧的距离,保留三位小数。你的输出和标准输出之间最多能有0.001的误差。
Sample Input
0 0 1 1 2 0 1 -1
3 4 0 5 -3 4 0 1
Sample Output
Case 1: 1.414
Case 2: 4.000
HINT
Source
思路:根据三点确定圆心和半径;关键是确定扇形区域(尤其是优弧)
确定点在扇形区域就分两种情况,在圆内和圆外;不在扇形区域就是min(到A,到C)距离最短的;
转载请注明出处:寻找&星空の孩子
具体见代码:
1 #include<stdio.h> 2 #include<math.h> 3 #define PI acos(-1.0) 4 #include<algorithm> 5 using namespace std; 6 struct Point 7 { 8 double x; 9 double y; 10 Point(double x=0,double y=0):x(x),y(y) {} //构造函数,方便代码编写 11 } pt; 12 struct Traingle 13 { 14 struct Point p[3]; 15 } Tr; 16 struct Circle 17 { 18 struct Point center; 19 double r; 20 } ans; 21 //计算两点距离 22 double Dis(struct Point p, struct Point q) 23 { 24 double dx=p.x-q.x; 25 double dy=p.y-q.y; 26 return sqrt(dx*dx+dy*dy); 27 } 28 //计算三角形面积 29 double Area(struct Traingle ct) 30 { 31 return fabs((ct.p[1].x-ct.p[0].x)*(ct.p[2].y-ct.p[0].y)-(ct.p[2].x-ct.p[0].x)*(ct.p[1].y-ct.p[0].y))/2.0; 32 } 33 //求三角形的外接圆,返回圆心和半径(存在结构体"圆"中) 34 struct Circle CircumCircle(struct Traingle t) 35 { 36 struct Circle tmp; 37 double a, b, c, c1, c2; 38 double xA, yA, xB, yB, xC, yC; 39 a = Dis(t.p[0], t.p[1]); 40 b = Dis(t.p[1], t.p[2]); 41 c = Dis(t.p[2], t.p[0]); 42 //根据 S = a * b * c / R / 4;求半径 R 43 tmp.r = (a*b*c)/(Area(t)*4.0); 44 xA = t.p[0].x; 45 yA = t.p[0].y; 46 xB = t.p[1].x; 47 yB = t.p[1].y; 48 xC = t.p[2].x; 49 yC = t.p[2].y; 50 c1 = (xA*xA+yA*yA - xB*xB-yB*yB) / 2; 51 c2 = (xA*xA+yA*yA - xC*xC-yC*yC) / 2; 52 tmp.center.x = (c1*(yA - yC)-c2*(yA - yB)) / ((xA - xB)*(yA - yC)-(xA - xC)*(yA - yB)); 53 tmp.center.y = (c1*(xA - xC)-c2*(xA - xB)) / ((yA - yB)*(xA - xC)-(yA - yC)*(xA - xB)); 54 return tmp; 55 } 56 57 typedef Point Vector; 58 59 60 Vector operator + (Vector A,Vector B) 61 { 62 return Vector(A.x+B.x,A.y+B.y); 63 } 64 65 66 Vector operator - (Point A,Point B) 67 { 68 return Vector(A.x-B.x,A.y-B.y); 69 } 70 71 72 Vector operator * (Vector A,double p) 73 { 74 return Vector(A.x*p,A.y*p); 75 } 76 77 78 Vector operator / (Vector A,double p) 79 { 80 return Vector(A.x/p,A.y/p); 81 } 82 83 84 bool operator < (const Point& a,const Point& b) 85 { 86 return a.x<b.x||(a.x==b.x && a.y<b.y); 87 } 88 89 90 const double eps = 1e-10; 91 92 int dcmp(double x) 93 { 94 if(fabs(x)<eps)return 0; 95 else return x < 0 ? -1 : 1; 96 } 97 bool operator == (const Point& a,const Point& b) 98 { 99 return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0; 100 } 101 102 double Dot(Vector A,Vector B) 103 { 104 return A.x*B.x+A.y*B.y; 105 } 106 double length(Vector A) 107 { 108 return sqrt(Dot(A,A)); 109 } 110 double Angle(Vector A,Vector B) 111 { 112 return acos(Dot(A,B)/length(A)/length(B)); 113 } 114 115 116 double Cross(Vector A,Vector B) 117 { 118 return A.x*B.y-B.x*A.y; 119 } 120 double Area2(Point A,Point B,Point C) 121 { 122 return Cross(B-A,C-A); 123 } 124 double len; 125 126 int main() 127 { 128 int ca=1; 129 while(scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&Tr.p[0].x,&Tr.p[0].y,&Tr.p[1].x,&Tr.p[1].y,&Tr.p[2].x,&Tr.p[2].y,&pt.x,&pt.y)!=EOF) 130 { 131 // printf("%lf %lf %lf %lf %lf %lf %lf %lf ",Tr.p[0].x,Tr.p[0].y,Tr.p[1].x,Tr.p[1].y,Tr.p[2].x,Tr.p[2].y,pt.x,pt.y); 132 Circle CC=CircumCircle(Tr); 133 // printf("%lf %lf,r=%lf",CC.center.x,CC.center.y,CC.r); 134 Point A(Tr.p[0].x,Tr.p[0].y),O(CC.center.x,CC.center.y),C(Tr.p[2].x,Tr.p[2].y),D(pt.x,pt.y),B(Tr.p[1].x,Tr.p[1].y); 135 136 Vector OA(A-O),OB(B-O),OC(C-O),OD(D-O); 137 if(Cross(OA,OB)<=0&&Cross(OB,OC)<=0||Cross(OA,OB)>=0&&Cross(OB,OC)<0&&Cross(OA,OC)>0||Cross(OA,OB)<0&&Cross(OB,OC)>=0&&Cross(OA,OC)>0)//顺 138 { 139 if(Cross(OA,OD)<=0&&Cross(OD,OC)<=0||Cross(OA,OD)>=0&&Cross(OD,OC)<0&&Cross(OA,OC)>0||Cross(OA,OD)<0&&Cross(OD,OC)>=0&&Cross(OA,OC)>0) 140 { 141 len=fabs(length(D-O)); 142 if(len<=CC.r) len=CC.r-len; 143 else len=len-CC.r; 144 } 145 else 146 { 147 len=min(fabs(length(A-D)),fabs(length(C-D))); 148 } 149 } 150 else if(Cross(OA,OB)>=0&&Cross(OB,OC)>=0||Cross(OA,OB)>0&&Cross(OB,OC)<=0&&Cross(OA,OC)<0||Cross(OA,OB)<=0&&Cross(OB,OC)>0&&Cross(OA,OC)<0)//逆 151 { 152 if(Cross(OA,OD)>=0&&Cross(OD,OC)>=0||Cross(OA,OD)>0&&Cross(OD,OC)<=0&&Cross(OA,OC)<0||Cross(OA,OD)<=0&&Cross(OD,OC)>0&&Cross(OA,OC)<0) 153 { 154 len=fabs(length(D-O)); 155 if(len<=CC.r) len=CC.r-len; 156 else len=len-CC.r; 157 } 158 else 159 { 160 len=min(fabs(length(A-D)),fabs(length(C-D))); 161 } 162 } 163 164 printf("Case %d: %0.3f ",ca++,len); 165 } 166 return 0; 167 } 168 /* 169 0 0 1 1 2 0 1 -1 170 3 4 0 5 -3 4 0 1 171 0 0 1 1 1 -1 0 -1 172 */