• BZOJ3301: [USACO2011 Feb] Cow Line


    3301: [USACO2011 Feb] Cow Line

    Time Limit: 10 Sec  Memory Limit: 128 MB
    Submit: 67  Solved: 39
    [Submit][Status]

    Description

    The N (1 <= N <= 20) cows conveniently numbered 1...N are playing 
    yet another one of their crazy games with Farmer John. The cows 
    will arrange themselves in a line and ask Farmer John what their 
    line number is. In return, Farmer John can give them a line number 
    and the cows must rearrange themselves into that line. 
    A line number is assigned by numbering all the permutations of the 
    line in lexicographic order. 

    Consider this example: 
    Farmer John has 5 cows and gives them the line number of 3. 
    The permutations of the line in ascending lexicographic order: 
    1st: 1 2 3 4 5 
    2nd: 1 2 3 5 4 
    3rd: 1 2 4 3 5 
    Therefore, the cows will line themselves in the cow line 1 2 4 3 5. 

    The cows, in return, line themselves in the configuration "1 2 5 3 4" and 
    ask Farmer John what their line number is. 

    Continuing with the list: 
    4th : 1 2 4 5 3 
    5th : 1 2 5 3 4 
    Farmer John can see the answer here is 5 

    Farmer John and the cows would like your help to play their game. 
    They have K (1 <= K <= 10,000) queries that they need help with. 
    Query i has two parts: C_i will be the command, which is either 'P' 
    or 'Q'. 

    If C_i is 'P', then the second part of the query will be one integer 
    A_i (1 <= A_i <= N!), which is a line number. This is Farmer John 
    challenging the cows to line up in the correct cow line. 

    If C_i is 'Q', then the second part of the query will be N distinct 
    integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the 
    cows challenging Farmer John to find their line number. 

    有N头牛,分别用1……N表示,排成一行。 
    将N头牛,所有可能的排列方式,按字典顺序从小到大排列起来。 
    例如:有5头牛 
    1st: 1 2 3 4 5 
    2nd: 1 2 3 5 4 
    3rd: 1 2 4 3 5 
    4th : 1 2 4 5 3 
    5th : 1 2 5 3 4 
    …… 
    现在,已知N头牛的排列方式,求这种排列方式的行号。 
    或者已知行号,求牛的排列方式。 
    所谓行号,是指在N头牛所有可能排列方式,按字典顺序从大到小排列后,某一特定排列方式所在行的编号。 
    如果,行号是3,则排列方式为1 2 4 3 5 
    如果,排列方式是 1 2 5 3 4 则行号为5 

    有K次问答,第i次问答的类型,由C_i来指明,C_i要么是‘P’要么是‘Q’。 
    当C_i为P时,将提供行号,让你答牛的排列方式。当C_i为Q时,将告诉你牛的排列方式,让你答行号。 

    Input

    * Line 1: Two space-separated integers: N and K 
    * Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query. 
    Line 2*i will contain just one character: 'Q' if the cows are lining 
    up and asking Farmer John for their line number or 'P' if Farmer 
    John gives the cows a line number. 

    If the line 2*i is 'Q', then line 2*i+1 will contain N space-separated 
    integers B_ij which represent the cow line. If the line 2*i is 'P', 
    then line 2*i+1 will contain a single integer A_i which is the line 
    number to solve for. 

    第1行:N和K 
    第2至2*K+1行:Line2*i ,一个字符‘P’或‘Q’,指明类型。 
    如果Line2*i是P,则Line2*i+1,是一个整数,表示行号; 
    如果Line2*i+1 是Q ,则Line2+i,是N个空格隔开的整数,表示牛的排列方式。

    Output

    * Lines 1..K: Line i will contain the answer to query i. 

    If line 2*i of the input was 'Q', then this line will contain a 
    single integer, which is the line number of the cow line in line 
    2*i+1. 

    If line 2*i of the input was 'P', then this line will contain N 
    space separated integers giving the cow line of the number in line 
    2*i+1. 
    第1至K行:如果输入Line2*i 是P,则输出牛的排列方式;如果输入Line2*i是Q,则输出行号

    Sample Input

    5 2
    P
    3
    Q
    1 2 5 3 4

    Sample Output


    1 2 4 3 5
    5

    HINT

     

    Source

    题解:
    我还是太sb。。。
    裸的康托展开和逆康托展开。
    没开long long 一直WA,搞了两小时。。。
    代码:
     1 #include<cstdio>
     2 #include<cstdlib>
     3 #include<cmath>
     4 #include<cstring>
     5 #include<algorithm>
     6 #include<iostream>
     7 #include<vector>
     8 #include<map>
     9 #include<set>
    10 #include<queue>
    11 #include<string>
    12 #define inf 1000000000
    13 #define maxn 500+100
    14 #define maxm 500+100
    15 #define eps 1e-10
    16 #define ll long long
    17 #define pa pair<int,int>
    18 #define for0(i,n) for(int i=0;i<=(n);i++)
    19 #define for1(i,n) for(int i=1;i<=(n);i++)
    20 #define for2(i,x,y) for(int i=(x);i<=(y);i++)
    21 #define for3(i,x,y) for(int i=(x);i>=(y);i--)
    22 #define mod 1000000007
    23 using namespace std;
    24 inline ll read()
    25 {
    26     ll x=0,f=1;char ch=getchar();
    27     while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    28     while(ch>='0'&&ch<='9'){x=10*x+ch-'0';ch=getchar();}
    29     return x*f;
    30 }
    31 ll n,m,a[25],b[25],fac[25];
    32 int main()
    33 {
    34     freopen("input.txt","r",stdin);
    35     freopen("output.txt","w",stdout);
    36     n=read();m=read();
    37     fac[0]=1;
    38     for(ll i=1;i<n;i++)fac[i]=fac[i-1]*i;
    39     char ch;
    40     while(m--)
    41     {
    42         ch=' ';
    43         while(ch!='P'&&ch!='Q')ch=getchar();
    44         for1(i,n)a[i]=0;
    45         if(ch=='P')
    46         {
    47             ll x=read()-1;
    48             for1(i,n)
    49             {
    50                 ll t=x/fac[n-i]+1,j=0,k;
    51                 for(k=1;j<t;k++)if(!a[k])j++;
    52                 a[k-1]=1;b[i]=k-1;
    53                 x%=fac[n-i];
    54             }
    55             for1(i,n-1)printf("%d ",b[i]);printf("%d
    ",b[n]); 
    56         }
    57         else
    58         {
    59             for1(i,n)b[i]=read();
    60             ll x=1;
    61             for1(i,n)
    62             {
    63                 ll j=0,k;
    64                 for(k=1;k<b[i];k++)if(!a[k])j++;
    65                 a[k]=1;
    66                 x+=j*fac[n-i];
    67             }
    68             printf("%lld
    ",x);
    69         }
    70     }
    71     return 0;
    72 }
    View Code
  • 相关阅读:
    Photon3Unity3D.dll 解析三——OperationRequest、OperationResponse
    关于VS2010的一些操作
    Photon3Unity3D.dll 解析二——EventData
    Photon3Unity3D.dll 解析一
    关于U3D中的移动和旋转
    U3D的一些常用基础脚本
    U3D模拟仿真实现
    构建基于TCP的应用层通信模型
    TCP协议的三次握手
    Python生成随机字符串
  • 原文地址:https://www.cnblogs.com/zyfzyf/p/4004908.html
Copyright © 2020-2023  润新知