• 动态规划题 HDU-1024


    http://acm.hdu.edu.cn/showproblem.php?pid=1024

    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem. 
    
    Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n). 
    
    Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed). 
    
    But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^ 


    题意就是求你n个数字m段和的最大值

    用动态规划求dp[n][m] 表示用前m个数划分为n块的最大和

    转移方程为 dp[n][m]=max(dp[n][m-1]+a[m],max(dp[n-1][t])+a[m]),其中dp[n][m-1]+a[m]表示第m个在前i块中 后面表示的是在自己独立变成一个块(1<=t<=m-1)

    那么问题来了如果 用这种方法 复杂度为(n^3)因此我们要化简一下,求max(dp[n-1][t])的时候重复求了一些过程,因此只需要改成  设一个变量M 表示前1到m-1的最大值 M=max(M,dp[i-1][j-1]);

    但是空间上不够,因此用一个滚动数组 dp[2][MAN];在求M的用到了i-1;

    完整代码:

    #include <stdlib.h>
    #include<iostream>
    #include<algorithm>
    //#include<bits/stdc++.h>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #define ll long long
    const ll INF=0x3f3f3f3f;
    #define mod 1000000007
    #define mem(a,b) memset(a,b,sizeof(a))
    //__builtin_popcount
    using namespace std;
    //priority_queue
    const ll MAX=1000000;
    
    int Max[MAX+10];
    int dp[2][MAX+10];
    int a[MAX+10];
    int main()
    {
        int n,m;
        while(cin>>m>>n)
        {
            for(int i=1; i<=n; i++)
                scanf("%d",&a[i]);
            mem(Max,0);
            mem(dp,0);
            int M;
            for(int i=1; i<=m; i++)
            {
                M=-0x3f3f3f3f;
                for(int j=i; j<=n; j++)
                {
                    M=max(M,dp[(i-1)%2][j-1]);
                    if(i!=j)
                        dp[i%2][j]=max(dp[i%2][j-1]+a[j],M+a[j]);
                    else dp[i%2][j]=M+a[j];
                }
    
            }
            M=-0x3f3f3f3f;
            for(int i=m; i<=n; i++)
                M=max(M,dp[m%2][i]);
            cout<<M<<endl;
        }
    
    }
    View Code
  • 相关阅读:
    区块链100篇之第四篇--矿工及挖矿
    区块链100篇之第三篇--数字签名
    区块链100篇之第二篇--P2P与比特币的支付与交易
    区块链100篇之第一篇--序(比特币)
    Bootstrap
    网页布局笔记
    element-ui中用el-dialog+el-table+el-pagination实现文件默认选中且在分页的条件下有记忆功能
    css中border画三角形
    border画梯形
    this作用范围
  • 原文地址:https://www.cnblogs.com/zxz666/p/11190614.html
Copyright © 2020-2023  润新知