• Machine learning第6周编程作业


    1.linearRegCostFunction:

    function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
    %LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear 
    %regression with multiple variables
    %   [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the 
    %   cost of using theta as the parameter for linear regression to fit the 
    %   data points in X and y. Returns the cost in J and the gradient in grad
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    grad = zeros(size(theta));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost and gradient of regularized linear 
    %               regression for a particular choice of theta.
    %
    %               You should set J to the cost and grad to the gradient.
    %
    
    
    h=(X*theta);
    for i=1:m,
      J=J+1/(2*m)*(h(i)-y(i))^2;
    endfor
    n= length(theta);
    for i=2:n,
      J=J+lambda/(2*m)*theta(i)^2;
    endfor
    
    
    grad(1)=1/m*(h-y)'*X(:,1);
    for i=2:n,
      grad(i)=1/m*(h-y)'*X(:,i)+lambda/m*theta(i);
    endfor
    
    
    
    
    
    
    
    % =========================================================================
    
    grad = grad(:);
    
    end
    

      

    2.learningCuvers

    function [error_train, error_val] = ...
        learningCurve(X, y, Xval, yval, lambda)
    %LEARNINGCURVE Generates the train and cross validation set errors needed 
    %to plot a learning curve
    %   [error_train, error_val] = ...
    %       LEARNINGCURVE(X, y, Xval, yval, lambda) returns the train and
    %       cross validation set errors for a learning curve. In particular, 
    %       it returns two vectors of the same length - error_train and 
    %       error_val. Then, error_train(i) contains the training error for
    %       i examples (and similarly for error_val(i)).
    %
    %   In this function, you will compute the train and test errors for
    %   dataset sizes from 1 up to m. In practice, when working with larger
    %   datasets, you might want to do this in larger intervals.
    %
    
    % Number of training examples
    m = size(X, 1);
    
    % You need to return these values correctly
    error_train = zeros(m, 1);
    error_val   = zeros(m, 1);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Fill in this function to return training errors in 
    %               error_train and the cross validation errors in error_val. 
    %               i.e., error_train(i) and 
    %               error_val(i) should give you the errors
    %               obtained after training on i examples.
    %
    % Note: You should evaluate the training error on the first i training
    %       examples (i.e., X(1:i, :) and y(1:i)).
    %
    %       For the cross-validation error, you should instead evaluate on
    %       the _entire_ cross validation set (Xval and yval).
    %
    % Note: If you are using your cost function (linearRegCostFunction)
    %       to compute the training and cross validation error, you should 
    %       call the function with the lambda argument set to 0. 
    %       Do note that you will still need to use lambda when running
    %       the training to obtain the theta parameters.
    %
    % Hint: You can loop over the examples with the following:
    %
    %       for i = 1:m
    %           % Compute train/cross validation errors using training examples 
    %           % X(1:i, :) and y(1:i), storing the result in 
    %           % error_train(i) and error_val(i)
    %           ....
    %           
    %       end
    %
    
    % ---------------------- Sample Solution ----------------------
    
    
    for i=1:m,
      theta=trainLinearReg(X(1:i,:),y(1:i),lambda);
      error_train(i)=linearRegCostFunction(X(1:i,:),y(1:i),theta,0);
      error_val(i)=linearRegCostFunction(Xval,yval,theta,0);
    endfor
    
    
    
    % -------------------------------------------------------------
    
    % =========================================================================
    
    end
    

      

    3.polyFeatures

    function [X_poly] = polyFeatures(X, p)
    %POLYFEATURES Maps X (1D vector) into the p-th power
    %   [X_poly] = POLYFEATURES(X, p) takes a data matrix X (size m x 1) and
    %   maps each example into its polynomial features where
    %   X_poly(i, :) = [X(i) X(i).^2 X(i).^3 ...  X(i).^p];
    %
    
    
    % You need to return the following variables correctly.
    X_poly = zeros(numel(X), p);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Given a vector X, return a matrix X_poly where the p-th 
    %               column of X contains the values of X to the p-th power.
    %
    % 
    
    
    
    
    for i=1:p,
      X_poly(:,i)=(X.^i);
    endfor
    
    % =========================================================================
    
    end
    

      

    4.ValidationCurve

    function [lambda_vec, error_train, error_val] = ...
        validationCurve(X, y, Xval, yval)
    %VALIDATIONCURVE Generate the train and validation errors needed to
    %plot a validation curve that we can use to select lambda
    %   [lambda_vec, error_train, error_val] = ...
    %       VALIDATIONCURVE(X, y, Xval, yval) returns the train
    %       and validation errors (in error_train, error_val)
    %       for different values of lambda. You are given the training set (X,
    %       y) and validation set (Xval, yval).
    %
    
    % Selected values of lambda (you should not change this)
    lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10]';
    
    % You need to return these variables correctly.
    error_train = zeros(length(lambda_vec), 1);
    error_val = zeros(length(lambda_vec), 1);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Fill in this function to return training errors in 
    %               error_train and the validation errors in error_val. The 
    %               vector lambda_vec contains the different lambda parameters 
    %               to use for each calculation of the errors, i.e, 
    %               error_train(i), and error_val(i) should give 
    %               you the errors obtained after training with 
    %               lambda = lambda_vec(i)
    %
    % Note: You can loop over lambda_vec with the following:
    %
    %       for i = 1:length(lambda_vec)
    %           lambda = lambda_vec(i);
    %           % Compute train / val errors when training linear 
    %           % regression with regularization parameter lambda
    %           % You should store the result in error_train(i)
    %           % and error_val(i)
    %           ....
    %           
    %       end
    %
    %
    
    for i=1:length(lambda_vec),
      Lam=lambda_vec(i);
      theta=trainLinearReg(X,y,Lam);
      error_train(i)=linearRegCostFunction(X,y,theta,0);
      error_val(i)=linearRegCostFunction(Xval,yval,theta,0);
    endfor
    
    
    
    
    
    
    
    
    % =========================================================================
    
    end
    

      

  • 相关阅读:
    Entity Framework with NOLOCK
    读取的XML节点中带有冒号怎么办?
    一道数学运算题
    mock基本使用
    json-server基本使用
    axios、ajax、fetch三者的区别
    深入响应式原理
    vue组件传值
    递归与循环的区别
    undefined 和null的区别
  • 原文地址:https://www.cnblogs.com/zxyqzy/p/10662959.html
Copyright © 2020-2023  润新知