1007 正整数分组
将一堆正整数分为2组,要求2组的和相差最小。
例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的。
输入
第1行:一个数N,N为正整数的数量。 第2 - N+1行,N个正整数。 (N <= 100, 所有正整数的和 <= 10000)
输出
输出这个最小差
输入样例
5 1 2 3 4 5
输出样例
1
变形的01背包;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<time.h> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 20005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) #define mclr(x,a) memset((x),a,sizeof(x)) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-5 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline int rd() { int x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ int n; int a[maxn]; int sum; int dp[100002]; int t[200], v[200]; int main() { // ios::sync_with_stdio(0); n = rd(); for (int i = 1; i <= n; i++) { a[i] = rd(); //sum[i] = sum[i - 1] + a[i]; sum += a[i]; t[i] = v[i] = a[i]; } int minn = inf; int V = sum / 2; for (int i = 1; i <= n; i++) { for (int j = V; j >= t[i]; j--) { dp[j] = max(dp[j], dp[j - t[i]] + v[i]); } } cout << abs(dp[V] - (sum - dp[V])) << endl; return 0; }