Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 242181 Accepted Submission(s): 57180
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence.
If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2:7 1 6
题意:t组数据,长度为n的字符串,找出一段连续且和最大的字符串
#include<stdio.h> #include<iostream> #include<algorithm> using namespace std; const int inf=0x3f3f3f3f; int main() { int t; scanf("%d",&t); int k=t; while(t--) { int n; scanf("%d",&n); int maxx=-inf,sum=0; int x=1,y=0,temp=1;//temp用来标记起点 for(int i=0; i<n; i++) { int a; scanf("%d",&a); sum+=a; if(sum>maxx)//两个if判断不能换位置,例5 -1 -2 -3 -4 -5 //这样会提前改变sum和temp的值,从而错误 { maxx=sum; x=temp; y=i+1; } if(sum<0) { sum=0; temp=i+2;//如果不用temp标记起点,直接用x的话例:5 -1 -2 -3 -4 -5 //x会一直加下去,输出就会出错 //x=i+1; } } printf("Case %d: %d %d %d ",k-t,maxx,x,y); if(t!=0) printf(" "); } return 0; }这个是错误的代码,我考虑一下我错哪了 #include<stdio.h> #include<iostream> #include<algorithm> using namespace std; const int inf=0x3f3f3f3f; int main() { int t; scanf("%d",&t); while(t--) { int n; scanf("%d",&n); int maxx=-inf,sum=0; int x=0,y=0,temp=1; //这种代码,有特别多的弊端, //值全为0时,maxx,x,y都不对 //还有只要sum>0都能进入那个循环,y就会一直加,也是错的 for(int i=0;i<n;i++) { int a; scanf("%d",&a); sum+=a; if(sum<0) { x=i+1; y=i+1; sum=0; } else { maxx=max(maxx,sum); y+=1; } } } }