• SPOJ


    Triple Sums

    You're given a sequence s of N distinct integers.
    Consider all the possible sums of three integers from the sequence at three different indicies.
    For each obtainable sum output the number of different triples of indicies that generate it.

    Constraints:

    N <= 40000, |si| <= 20000

    Input

    The first line of input contains a single integer N.
    Each of the next N lines contain an element of s.

    Output

    Print the solution for each possible sum in the following format:
    sum_value : number_of_triples

    Smaller sum values should be printed first.

    Example

    Input:

    5
    -1
    2
    3
    0
    5
    Output:
    1 : 1
    2 : 1
    4 : 2
    5 : 1
    6 : 1
    7 : 2
    8 : 1
    10 : 1

    Explanation:
    4 can be obtained using triples ( 0, 1, 2 ) and ( 0, 3, 4 ).
    7 can be obtained using triples ( 0, 2, 4 ) and ( 1, 3, 4 ).

    Note: a triple is considered the same as any of its permutations.

    题意:

      给你n个数,问你任选三个不同序号的数和为x的方案数有多少

    题解:

      FFT;

      容斥原理要学好

      

    #include<bits/stdc++.h>
    using namespace std;
    #pragma comment(linker, "/STACK:102400000,102400000")
    #define ls i<<1
    #define rs ls | 1
    #define mid ((ll+rr)>>1)
    #define pii pair<int,int>
    #define MP make_pair
    typedef long long LL;
    const long long INF = 1e18+1LL;
    const double pi = acos(-1.0);
    const int N = 5e5+10, M = 1e3+20,inf = 2e9,mod = 1e9+7;
    
    
    struct Complex {
        double r , i ;
        Complex () {}
        Complex ( double r , double i ) : r ( r ) , i ( i ) {}
        Complex operator + ( const Complex& t ) const {
            return Complex ( r + t.r , i + t.i ) ;
        }
        Complex operator - ( const Complex& t ) const {
            return Complex ( r - t.r , i - t.i ) ;
        }
        Complex operator * ( const Complex& t ) const {
            return Complex ( r * t.r - i * t.i , r * t.i + i * t.r ) ;
        }
    } ;
    
    void FFT ( Complex y[] , int n , int rev ) {
        for ( int i = 1 , j , t , k ; i < n ; ++ i ) {
            for ( j = 0 , t = i , k = n >> 1 ; k ; k >>= 1 , t >>= 1 ) j = j << 1 | t & 1 ;
            if ( i < j ) swap ( y[i] , y[j] ) ;
        }
        for ( int s = 2 , ds = 1 ; s <= n ; ds = s , s <<= 1 ) {
            Complex wn = Complex ( cos ( rev * 2 * pi / s ) , sin ( rev * 2 * pi / s ) ) , w ( 1 , 0 ) , t ;
            for ( int k = 0 ; k < ds ; ++ k , w = w * wn ) {
                for ( int i = k ; i < n ; i += s ) {
                    y[i + ds] = y[i] - ( t = w * y[i + ds] ) ;
                    y[i] = y[i] + t ;
                }
            }
        }
        if ( rev == -1 ) for ( int i = 0 ; i < n ; ++ i ) y[i].r /= n ;
    }
    
    int num[N],n,x,now[N];
    Complex s[N*8],t[N*8],tt[N];
    int main() {
        scanf("%d",&n);
        for(int i = 1; i <= n; ++i) {
            scanf("%d",&x);
            num[x + 20000]++;
        }
        int n1;
        for(int i = 1; i <= 20000*6; i<<=1,n1=i);
    
        for(int i = 0; i <= 20000*2; ++i) now[i+i] += num[i];
        for(int i = 0; i <= 20000*4; ++i) s[i] = Complex(now[i],0);
        for(int i = 20000*4+1; i < n1; ++i) s[i] = Complex(0,0);
    
        for(int i = 0; i <= 2*20000; ++i) t[i] = Complex(num[i],0);
        for(int i = 2*20000+1; i < n1; ++i) t[i] = Complex(0,0);
        for(int i = 0; i < n1; ++i) tt[i] = t[i];
        FFT(s,n1,1),FFT(t,n1,1);FFT(tt,n1,1);
        for(int i = 0; i < n1; ++i) t[i] = t[i]*t[i]*t[i];
        for(int i = 0; i < n1; ++i) s[i] = s[i]*tt[i];
        FFT(s,n1,-1),FFT(t,n1,-1);
        int cnt = 0;
        for(int i = 0; i <= 6*20000; ++i) {
            int x = ((int)(t[i].r + 0.5)) - 3*((int)(s[i].r+0.5));
            if(i%3==0) x += 2*num[i/3];
            x/=6;
            if(x) {
                printf("%d : %d
    ",i - 3*20000,x);
            }
        }
        return 0;
    }
  • 相关阅读:
    ssh反向代理+正向代理
    用 Java 撸了一款 SSH 客户端,真香啊!
    python清洗字符串
    欢迎来到 ZooKeeper 动物世界
    开篇:免费开源的趣讲 ZooKeeper 教程(连载)
    记忆中的像素块褪色了吗?用开源的体素编辑器重新做个 3D 的吧!
    不用再等后端的接口啦!这个开源项目花 2 分钟就能模拟出后端接口
    区块链技术在国外基础教育中的应用
    区块链在教育中的应用
    《敏捷开发培训考试》考试题目及答案
  • 原文地址:https://www.cnblogs.com/zxhl/p/7102937.html
Copyright © 2020-2023  润新知