• HDU 5875 Function st + 二分


    Function

    Problem Description
     
    The shorter, the simpler. With this problem, you should be convinced of this truth.
      
      You are given an array A of N postive integers, and M queries in the form (l,r). A function F(l,r) (1lrN) is defined as:
    F(l,r)={AlF(l,r1) modArl=r;l<r.
    You job is to calculate F(l,r), for each query (l,r).
     
    Input
     
    There are multiple test cases.
      
      The first line of input contains a integer T, indicating number of test cases, and T test cases follow. 
      
      For each test case, the first line contains an integer N(1N100000).
      The second line contains N space-separated positive integers: A1,,AN (0Ai109).
      The third line contains an integer M denoting the number of queries. 
      The following M lines each contain two integers l,r (1lrN), representing a query.
     
    Output
     
    For each query(l,r), output F(l,r) on one line.
     
    Sample Input
     
    1 3 2 3 3 1 1 3
     

    Sample Output

    2
     

    题意:

      给你一个n,n个数

      m个询问,每次询问你 l,r,, a[l] % a[l+1] % a[l+2] %……a[r] 结果是多少

    题解;

      每次有效的取模会使结果减半,因此只有log次有效取模,每次往右找一个不大于结果的最靠左的数,ST表+二分

      注意RMQ查询的时候少用 log函数,这是造成我开始超时的原因

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<vector>
    using namespace std;
    
    #pragma comment(linker, "/STACK:102400000,102400000")
    #define ls i<<1
    #define rs ls | 1
    #define mid ((ll+rr)>>1)
    #define pii pair<int,int>
    #define MP make_pair
    
    typedef long long LL;
    const long long INF = 1e18;
    const double Pi = acos(-1.0);
    const int N = 1e5+10, M = 1e2+11, mod = 1e9+7, inf = 2e9;
    
    
    int dp[N][50],a[N],n,q;
    void st() {
            for(int j = 1; (1<<j) <= n; ++j) {
                for(int i = 1; (i + (1<<j) - 1) <= n; ++i) {
                    dp[i][j] = min(dp[i][j-1],dp[i + (1<<(j-1))][j-1]);
                }
            }
    }
    int query(int l,int r) {
            int len = r - l + 1;
            int k = 0;
            while ((1 << (k + 1)) <= len) k++;
            return min(dp[l][k],dp[r - (1<<k) + 1][k]);
    }
    int _binary_search(int l,int r,int res) {
            int s = r+1;
            while(l <= r) {
                int md = (l + r) >> 1;
                if(query(l,md) <= res) r = md - 1,s = md;
                else l = md + 1;
            }
            return s;
    }
    int main() {
            int T;
            scanf("%d",&T);
            while(T--) {
                scanf("%d",&n);
                for(int i = 1; i <= n; ++i) scanf("%d",&a[i]),dp[i][0]=a[i];
                st();
                scanf("%d",&q);
                for(int i = 1; i <= q; ++i) {
                    int x,y,L,R;
                    scanf("%d%d",&x,&y);
                    int res = a[x];
                    L = x+1, R = y;
                    while(L <= R && res) {
                       L = _binary_search(L,R,res);
                       if(L<=R) {
                            res%=a[L];L++;
                       }
                    }
                    printf("%d
    ",res);
                }
            }
            return 0;
    }
  • 相关阅读:
    stylish——一键为网页换肤,改变字体大小,去除广告
    css3实现可以计算的自适应布局——calc()
    用一个div模拟textarea并实现高度自适应
    关于background定位
    CSS3 :nth-of-type() 选择器
    css3圣诞雪景球
    ie6、7、8兼容部分css3
    html5 录制mp3音频,支持采样率和比特率设置
    html5 图片上传,支持图片预览、压缩、及进度显示,兼容IE6+及标准浏览器
    grunt配置太复杂?使用Qbuild进行文件合并、压缩、格式化等处理
  • 原文地址:https://www.cnblogs.com/zxhl/p/5866300.html
Copyright © 2020-2023  润新知