• pandas组队学习最终季


    EX1

    1.使用正则表达式提取出所需信息:

    • df1提取模型的状态,精度和模型名称
    • df2提取模型训练时间
    import pandas as pd
    df=pd.read_table(r'C:UserslxhDownloads/benchmark.txt', header=None)
    pat1='Benchmarking (w+) (w+) precision type (w+)'
    pat2='(w+)  model average (w+) time :  (.+) ms'
    df1=df[0].str.extract(pat1).rename(columns={0:'state',
    								 1:'precision',
    								 2:'model'}).dropna().reset_index(drop=True)
    df2=df[0].str.extract(pat2).rename(columns={0:'model',		
                                                  1:'state',			 
                                                2:'time'}).dropna().reset_index(drop=True)
    

    得到df1:

    state precision model
    0 Training float mnasnet0_5
    1 Training float mnasnet0_75
    2 Training float mnasnet1_0
    3 Training float mnasnet1_3
    4 Training float resnet18

    df2:

    model state time
    0 mnasnet0_5 train 28.5276
    1 mnasnet0_75 train 34.1055
    2 mnasnet1_0 train 34.3138
    3 mnasnet1_3 train 35.5569
    4 resnet18 train 18.6601

    2.进行列操作:

    • 使用cat将df1的state列和precision列进行列的拼接,生成新的type列,然后将state列和precision列删除
    • 使用apply方法对df2的时间保留三位小数,并在df1中增加time列
    df1['type'] = df1['state'].str.cat(df1['precision'],sep = '_')
    df1 = df1.drop(labels=['state',"precision"],axis=1)
    df1['time'] = df2['time'].apply(lambda x:round(float(x),3))
    
    model type time
    0 mnasnet0_5 Training_float 28.528
    1 mnasnet0_75 Training_float 34.105
    2 mnasnet1_0 Training_float 34.314
    3 mnasnet1_3 Training_float 35.557
    4 resnet18 Training_float 18.66

    3.长宽表变形和列名变换:

    • 使用pivot函数将df1变成宽表
    • 重新设置列名,最后按model进行排序:
    res  = df1.pivot(index = ['model'], columns = ['type'],values = ['time']).reset_index()
    res.columns = res.columns.droplevel()
    res = res.rename(columns ={'':'model'})
    res = res.sort_values('model',ascending=True)
    
    model Inference_double Inference_float Inference_half Training_double Training_float Training_half
    0 densenet121 144.111 15.637 19.772 417.207 93.357 88.976
    1 densenet161 511.177 31.75 27.555 1290.29 136.624 144.319
    2 densenet169 175.808 21.598 26.371 511.404 104.84 121.556
    3 densenet201 223.96 26.169 33.394 654.365 129.334 118.94
    4 mnasnet0_5 11.87 8.039 6.929 48.232 28.528 27.198
  • 相关阅读:
    [C++11新特性] weak_ptr和unique_ptr
    [C++11新特性] shared_ptr共享的智能指针
    VS2019 Qt5.15.2 开发环境搭建
    【C++11 新特性】Lambda表达式(三)
    【C++11 新特性】bind(二)
    【C++11 新特性】function(一)
    【IPC 进程间通信】有名管道的简单实现
    【IPC 进程间通信】常用进程间通信方式总结
    Qt 文件常见操作管理类
    【GitHub 开源分享】QML 在线预览工具
  • 原文地址:https://www.cnblogs.com/zwrAI/p/14274803.html
Copyright © 2020-2023  润新知