• 洛谷P2774 方格取数问题(最小割)


    题意

    $n imes m$的矩阵,不能取相邻的元素,问最大能取多少

    Sol

    首先补集转化一下:最大权值 = sum - 使图不连通的最小权值

    进行黑白染色

    从S向黑点连权值为点权的边

    从白点向T连权值为点券的边

    黑点向白点连权值为INF的边

    这样就转化成了最小割问题,跑Dinic即可

    /*
    首先补集转化一下:最大权值 = sum - 使图不连通的最小权值
    进行黑白染色
    从S向黑点连权值为点权的边
    从白点向T连权值为点券的边
    黑点向白点连权值为INF的边
    跑Dinic
    */
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<queue>
    using namespace std;
    const int MAXN = 1e5 + 10, INF = 1e9 + 10;
    inline int read() {
        char c = getchar();
        int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = 1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, M, a[101][101], black[101][101], S, T = 100001;
    struct Edge {
        int u, v, f, nxt;
    } E[MAXN];
    int head[MAXN], cur[MAXN], num = 0;
    inline void add_edge(int x, int y, int z) {
        E[num] = (Edge) {x, y, z, head[x]};
        head[x] = num++;    
    }
    inline void AddEdge(int x, int y, int z) {
        add_edge(x, y, z);
        add_edge(y, x, 0);
    }
    int trans(int x, int y) {
        return (x - 1) * M + y;
    }
    int xx[5] = {0, -1, +1, 0, 0};
    int yy[5] = {0, 0, 0, -1, +1};
    int deep[MAXN];
    inline int BFS() {
        queue<int> q; q.push(S);
        memset(deep, 0, sizeof(deep));
        deep[S] = 1;
        while(!q.empty()) {
            int p = q.front(); q.pop();
            for(int i = head[p]; i != -1; i = E[i].nxt) {
                int to = E[i].v;
                if(!deep[to] && E[i].f) 
                    deep[to] = deep[p] + 1, q.push(to);
            }
        }
        return deep[T];
    }
    int DFS(int x, int flow) {
        if(x == T) return flow;
        int ansflow = 0;
        for(int &i = cur[x]; i != -1; i = E[i].nxt) {
            int to = E[i].v;
            if(E[i].f && deep[to] == deep[x] + 1) {
                int nowflow = DFS(to, min(flow, E[i].f));
                E[i].f -= nowflow; E[i ^ 1].f += nowflow;
                flow -= nowflow; ansflow += nowflow;
                if(flow <= 0) break;
            }
        }
        return ansflow;
    }
    int Dinic() {
        int ans = 0;
        while(BFS()) {
            memcpy(cur, head, sizeof(head));
            ans += DFS(S, INF);
        }
        return ans;
    }
    int main() {
        memset(head, -1, sizeof(head));
        N = read();
        M = read();
        int sum = 0;
        for(int i = 1; i <= N; i++)
            for(int j = 1; j <= M; j++) {
                a[i][j] = read(); sum += a[i][j];
                if((i + j) % 2 == 0) {
                    AddEdge(S, trans(i, j), a[i][j]);    
                    for(int k = 1; k <= 4; k++) {
                        int wx = i + xx[k], wy = j + yy[k];
                        if(wx >= 1 && wx <= N && wy >= 1 && wy <= M)
                            AddEdge(trans(i, j), trans(wx, wy), INF);
                    }
                }
                else AddEdge(trans(i, j), T, a[i][j]);
            }
        printf("%d", sum - Dinic());
        return 0;
    }
    /*
    3 3
    1 000 00-
    1 00- 0-+
    2 0-- -++
    
    */
  • 相关阅读:
    python(4):Python应用场景
    python(3):python的优缺点
    MySQL(17):用户登录实例
    MySQL(16):参数化、封装
    MySQL(15):与python交互的增删改查
    MySQL(14):与python交互的类型
    MySQL(13):索引
    c++ --程序编译
    c++ -- 顺序容器操作
    c++ --string操作
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/9350805.html
Copyright © 2020-2023  润新知