题意
$n imes m$的矩阵,不能取相邻的元素,问最大能取多少
Sol
首先补集转化一下:最大权值 = sum - 使图不连通的最小权值
进行黑白染色
从S向黑点连权值为点权的边
从白点向T连权值为点券的边
黑点向白点连权值为INF的边
这样就转化成了最小割问题,跑Dinic即可
/* 首先补集转化一下:最大权值 = sum - 使图不连通的最小权值 进行黑白染色 从S向黑点连权值为点权的边 从白点向T连权值为点券的边 黑点向白点连权值为INF的边 跑Dinic */ #include<cstdio> #include<algorithm> #include<cstring> #include<queue> using namespace std; const int MAXN = 1e5 + 10, INF = 1e9 + 10; inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = 1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int N, M, a[101][101], black[101][101], S, T = 100001; struct Edge { int u, v, f, nxt; } E[MAXN]; int head[MAXN], cur[MAXN], num = 0; inline void add_edge(int x, int y, int z) { E[num] = (Edge) {x, y, z, head[x]}; head[x] = num++; } inline void AddEdge(int x, int y, int z) { add_edge(x, y, z); add_edge(y, x, 0); } int trans(int x, int y) { return (x - 1) * M + y; } int xx[5] = {0, -1, +1, 0, 0}; int yy[5] = {0, 0, 0, -1, +1}; int deep[MAXN]; inline int BFS() { queue<int> q; q.push(S); memset(deep, 0, sizeof(deep)); deep[S] = 1; while(!q.empty()) { int p = q.front(); q.pop(); for(int i = head[p]; i != -1; i = E[i].nxt) { int to = E[i].v; if(!deep[to] && E[i].f) deep[to] = deep[p] + 1, q.push(to); } } return deep[T]; } int DFS(int x, int flow) { if(x == T) return flow; int ansflow = 0; for(int &i = cur[x]; i != -1; i = E[i].nxt) { int to = E[i].v; if(E[i].f && deep[to] == deep[x] + 1) { int nowflow = DFS(to, min(flow, E[i].f)); E[i].f -= nowflow; E[i ^ 1].f += nowflow; flow -= nowflow; ansflow += nowflow; if(flow <= 0) break; } } return ansflow; } int Dinic() { int ans = 0; while(BFS()) { memcpy(cur, head, sizeof(head)); ans += DFS(S, INF); } return ans; } int main() { memset(head, -1, sizeof(head)); N = read(); M = read(); int sum = 0; for(int i = 1; i <= N; i++) for(int j = 1; j <= M; j++) { a[i][j] = read(); sum += a[i][j]; if((i + j) % 2 == 0) { AddEdge(S, trans(i, j), a[i][j]); for(int k = 1; k <= 4; k++) { int wx = i + xx[k], wy = j + yy[k]; if(wx >= 1 && wx <= N && wy >= 1 && wy <= M) AddEdge(trans(i, j), trans(wx, wy), INF); } } else AddEdge(trans(i, j), T, a[i][j]); } printf("%d", sum - Dinic()); return 0; } /* 3 3 1 000 00- 1 00- 0-+ 2 0-- -++ */