• HDU3507 Print Article(斜率优化DP)


    Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
    Total Submission(s): 16213    Accepted Submission(s): 4992


    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5 5 9 5 7 5
     
    Sample Output
    230
     
    Author
    Xnozero
     
    Source
     
    Recommend
    zhengfeng   |   We have carefully selected several similar problems for you:  3506 3501 3504 3505 3498 
     
     
    比较裸的斜率优化。
    以前用的是斜截式推,现在改用求决策单调性的方式推了,
    后者虽然计算量大,但是无脑一些
    推出来之后维护一个上凸壳
    推荐一篇写的非常好的博客
    https://www.cnblogs.com/orzzz/p/7885971.html
    不知道为啥不能写成除法的形式。。
     
    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int MAXN = 1e6 + 10, INF = 1e9 + 10;
    int N, M, a[MAXN], s[MAXN], f[MAXN], q[MAXN];
    int X(int x) {
        return s[x];
    }
    int Y(int x) {
        return f[x] + s[x] * s[x];
    }
    int check(int x, int y, int i) {
        return (Y(y) - Y(x)) <= (X(y) - X(x)) * 2 * s[i];
    }
    int check2(int xx1, int yy1, int xx2, int yy2) {
        return ((Y(yy1) - Y(xx1)) * (X(yy2) - X(xx2))) >= ((Y(yy2) - Y(xx2)) * (X(yy1) - X(xx1)));
    }
    /*int slope(int x, int y) {
        return (Y(y) - Y(x)) / (X(y) - X(x));
    }*/
    int main() {
        //freopen("a.in", "r", stdin);
        while(scanf("%d %d", &N, &M) != EOF) {
            memset(f, 0, sizeof(f)); 
            for(int i = 1; i <= N; i++) scanf("%d", &a[i]), s[i] = s[i - 1] + a[i];
            int h = 0, t = 0;
            for(int i = 1; i <= N; i++) {
            //    if(h < t)    printf("%lf %lf
    ", slope(q[h], q[h + 1]), (double)2 * s[i]);
                while(h < t && check(q[h], q[h + 1], i)) h++;
                f[i] = (f[q[h]] + (s[i] - s[q[h]]) * (s[i] - s[q[h]]) + M);
                while(h < t && check2(q[t - 1], q[t], q[t], i)) t--;
                q[++t] = i;
            }
            printf("%d
    ", f[N]);
        }
        return 0;
    }
  • 相关阅读:
    刻舟求剑,
    录制时间是不准确的,
    HIV T2
    DNA RNA
    洛谷 P1428 小鱼比可爱
    Codevs 1081 线段树练习2
    Codevs 1080 线段树联系
    Tarjan算法
    Codevs 2611 观光旅游
    洛谷 1865 A%B问题
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/9161510.html
Copyright © 2020-2023  润新知