• BZOJ3122: [Sdoi2013]随机数生成器(BSGS)


    题意

    题目链接

    Sol

    这题也比较休闲。

    直接把(X_{i+1} = (aX_i + b) pmod P)展开,推到最后会得到这么个玩意儿

    [a^{i-1} (x_1 + frac{b}{a-1}) - frac{b}{a-1} equiv T pmod P ]

    然后再合并一下就可以大力BSGS了。

    有些细节需要特判一下

    #include<bits/stdc++.h> 
    #define Pair pair<int, int>
    #define MP(x, y) make_pair(x, y)
    #define fi first
    #define se second
    #define int long long 
    #define LL long long 
    #define ull unsigned long long 
    #define Fin(x) {freopen(#x".in","r",stdin);}
    #define Fout(x) {freopen(#x".out","w",stdout);}
    using namespace std;
    const int MAXN = 1e6 + 10, INF = 1e9 + 10;;
    int mod;
    const double eps = 1e-9;
    template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
    template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
    template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
    template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
    template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
    template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
    template <typename A> inline void debug(A a){cout << a << '
    ';}
    template <typename A> inline LL sqr(A x){return 1ll * x * x;}
    template <typename A, typename B> inline LL fp(A a, B p, int md = mod) {int b = 1;while(p) {if(p & 1) b = mul(b, a);a = mul(a, a); p >>= 1;}return b;}
    template <typename A> A inv(A x) {return fp(x, mod - 2);}
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int a, b, X1, End;
    //x_{i+1} = (aX_i + b) % P
    //a^ans = x % p
    //a^{i * k - j} = x % p
    //a^{i * k} = x * a^j % p
    map<int, int> mp;
    
    /*
    int Query(int a, int x, int p) {
    	if(__gcd(a, p) != 1) return -2;
    	int base = 1;
    	for(int i = 0; i <= p; i++) {
    		if(base % p == x) return i;
    		mul2(base, a);
    	}
    	return -2;
    }
    */
    
    int Query(int a, int x, int p) {
    	if(__gcd(a, p) != 1) return -2;
    	mp.clear(); int block = ceil(sqrt(p)), base = fp(a, block);
    	for(int i = 0, cur = x; i <= block; i++, mul2(cur, a)) mp[cur] = i;
    	for(int i = 1, cur = base; i <= block; i++, mul2(cur, base)) 
    		if(mp[cur]) 
    			return i * block - mp[cur];
    	return -2;
    }
    
    void solve() {
    	mod = read(); a = read(); b = read(); X1 = read(); End = read();
    	if(X1 == End) {puts("1"); return ;}
    	if(!a) {
    		if(!b) {puts(End == X1 ? "1" : "-1");return ;}
    		else {puts(End == b ? "2" : "-1");return ;}
    	}
    	if(a == 1) {
    		if(!b) {puts(End == X1 ? "1" : "-1");return ;}
    		else {
    			//int tmp = add(End, -X1 + mod) % b;
    			//cout << tmp << '
    ';
    			cout << mul(add(End, -X1), inv(b)) + 1 << '
    '; 
    			return ;
    		}
    	}
    	int tmp = mul(b, inv(a - 1));
    	add2(X1, tmp); add2(End, tmp); 
    	mul2(End, inv(X1));
    	cout << Query(a, End, mod) + 1 << '
    ';
    }
    signed main() {
    	//freopen("a.in", "r", stdin);
    	for(int T = read(); T--; solve());
    	return 0;
    }
    
  • 相关阅读:
    Erlang顺序型编程
    [转]理解gen_server behaviour
    [转]Parsing Text and Binary Files With Erlang
    [转]Running Hadoop On Ubuntu Linux (SingleNode Cluster)
    [转]erlang 监督树
    [转]Erlang之IO编程
    [转]分段表
    [转]如何“打败”CAP定理
    [转]A Millionuser Comet Application with Mochiweb
    [转]消息队列软件大比拼
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10596827.html
Copyright © 2020-2023  润新知