• HDU 6138 Fleet of the Eternal Throne(后缀自动机)


    题意

    题目链接

    Sol

    真是狗血,被疯狂卡常的原因竟是

    我们考虑暴力枚举每个串的前缀,看他能在(x, y)的后缀自动机中走多少步,对两者取个min即可

    复杂度(O(T 10^5 M))(好假啊)

    #include<bits/stdc++.h>
    using namespace std;
    const int MAXN = 2e5 + 10;
    int N, M;
    string s[MAXN];
    struct SAM {
    	int ch[MAXN][26], fa[MAXN], len[MAXN], tot, las, root;
    	void init() {
    		for(int i = 0; i <= tot; i++) 
    			fa[i] = 0, len[i] = 0, memset(ch[i], 0, sizeof(ch[i]));
    		tot = root = 1; las = 1;
    	}
    	void insert(int x) {
    		int now = ++tot, pre = las; las = now; len[now] = len[pre] + 1;
    		for(; pre && !ch[pre][x]; pre = fa[pre]) ch[pre][x] = now;
    		if(!pre) {fa[now] = root; return ;}
    		int q = ch[pre][x];
    		if(len[q] == len[pre] + 1) fa[now] = q;
    		else {
    			int nq = ++tot; fa[nq] = fa[q]; len[nq] = len[pre] + 1; fa[q] = fa[now] = nq;
    			memcpy(ch[nq], ch[q], sizeof(ch[q]));
    			for(; pre && ch[pre][x] == q; pre = fa[pre]) ch[pre][x] = nq;
    		}
    	}
    	void Build(string str) {
    		init();	
    		for(auto &x: str) 
    			insert(x - 'a');
    	}
    	int find(string str) {
    		int cur = 0, now = root;
    		for(auto &x : str) {
    			int v = x - 'a';
    			if(ch[now][v]) cur++, now = ch[now][v];
    			else return cur;
    		}
    		return cur;
    	}
    }S[2];
    
    
    void solve() {
    	cin >> N;
    	for(int i = 1; i <= N; i++) cin >> s[i];
    	cin >> M;
    	while(M--) {
    		int x, y;
    		cin >> x >> y;
    		S[0].Build(s[x]);
    		S[1].Build(s[y]);
    		int ans = 0;
    		for(int i = 1; i <= N; i++) 
    			ans = max(ans, min(S[0].find(s[i]), S[1].find(s[i])));
    		cout << ans << '
    ';
    	}	
    }
    int main() {
    //	freopen("a.in", "r", stdin);
    	ios::sync_with_stdio(0);
    	int T; cin >> T;
        for(; T--; solve());
        return 0;
    }
    
  • 相关阅读:
    navicat的快捷键
    NoSQL Redis的学习笔记
    awk的使用
    把自己的电脑做服务器发布tomcat的项目外网访问
    linux系统备份
    系统自动化配置和管理工具:SaltStack
    RSync实现文件备份同步
    传送文件
    面试题
    闭包closure
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10390735.html
Copyright © 2020-2023  润新知