• BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)


    题意

    题目链接

    Sol

    首先不考虑(a)的限制

    我们要求的是

    [sum_{i = 1}^n sum_{j = 1}^m sigma(gcd(i, j)) ]

    用常规的套路可以化到这个形式

    [sum_{d = 1}^n sigma (d) sum_{k = 1}^{frac{n}{d}} mu(k) frac{n}{kd} frac{m}{kd} ]

    (kd = T)

    那么

    (sum_{T = 1}^n leftlfloor frac{n}{T} ight floor leftlfloor frac{m}{T} ight floor sum_{d | T} sigma(d) mu(frac{T}{d}))

    然后按照套路筛出后面的卷积。

    但是现在有(a)的限制了。。

    那么可以直接离线之后树状数组维护一下。

    时间复杂度:(O(Tsqrt{n}logn))

    约数个数和用埃氏筛两行就筛出来了

    #include<bits/stdc++.h>
    #define chmax(a, b) (a = (a > b ? a : b))
    #define chmin(a, b) (a = (a < b ? a : b))
    //#define int long long 
    using namespace std;
    const int MAXN = 3e5 + 10;
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int T, mx, mu[MAXN], phi[MAXN], prime[MAXN], tot, vis[MAXN], si[MAXN], out[MAXN], p[MAXN];
    struct Query{
        int N, M, a, id;
        bool operator < (const Query &rhs) const {
            return a < rhs.a;
        }
    }q[MAXN];
    int comp(const Query &a, const Query &b) {
        return a.id < b.id;
    }
    int comp2(const int &a, const int &b) {
        return si[a] < si[b];
    }
    void Get(int N) {
        for(int i = 1; i <= N; i++) 
            for(int j = i; j <= N; j += i) si[j] += i;
        vis[1] = 1; mu[1] = 1;
        for(int i = 2; i <= N; i++) {
            if(!vis[i]) prime[++tot] = i, mu[i] = -1;
            for(int j = 1; j <= tot && i * prime[j] <= N; j++) {
                vis[i * prime[j]] = 1;
                if(!(i % prime[j])) {mu[i * prime[j]] = 0; break;}
                else mu[i * prime[j]] = -mu[i];
            }
        }
    }
    #define lb(x) (x & (-x))
    int Tr[MAXN];
    void Add(int x, int val) {
        while(x <= mx) Tr[x] += val, x += lb(x);
    }
    int Sum(int x) {
        int ans = 0;
        while(x) ans += Tr[x], x -= lb(x);
        return ans;
    }
    int solve(int n, int m) {
        int rt = 0, las = 0, now;
        for(int i = 1, nxt; i <= n; i = nxt + 1) {
            nxt = min(m / (m / i), n / (n / i)); 
            now = Sum(nxt);
            rt += (n / i) * (m / i) * (now - las);
            las = now;
        }
        return rt;
    }
    signed main() {
        T = read();
        for(int i = 1; i <= T; i++) {
            q[i].N = read(), q[i].M = read(), q[i].a = read(), q[i].id = i;
            if(q[i].N > q[i].M) swap(q[i].N, q[i].M);;
            chmax(mx, q[i].N);
        }
        Get(mx);
        for(int i = 1; i <= mx; i++) p[i] = i;
        sort(p + 1, p + mx + 1, comp2);
        sort(q + 1, q + T + 1);
        
        for(int t = 1, d = 1; t <= T; t++) {
            for(; d <= mx && si[p[d]] <= q[t].a; d++) {
                for(int k = p[d]; k <= mx; k += p[d]) {
                    if(!mu[k / p[d]]) continue;
                    Add(k, si[p[d]] * mu[k / p[d]]);
                }
            }
            out[q[t].id] = solve(q[t].N, q[t].M);
        }
        for(int i = 1; i <= T; i++) 
            printf("%d
    ", out[i] < 0 ? out[i] + 2147483648 : out[i]);
            //printf("%d
    ", out[i] <);
        return 0;
    }
    
  • 相关阅读:
    win10快速搭建git服务
    java字节流转对象,应用于协议解析
    产品设计-后台管理权限设计RBAC
    Git :fatal: 错误提示解决办法
    初学git,出现错误:fatal: Not a git repository (or any of the parent directories): .git
    css 清除浮动
    asp.net连接SQL SERVER 2012的方法
    c#的序列化与反序列化
    .NET三层架构例子超链接可以点击显示内容页面
    ASP.NET中iframe框架点击左边页面链接,右边显示链接页面内容
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10095056.html
Copyright © 2020-2023  润新知