• 【NOIP2013中秋节模拟】表白(love) 题解


    【NOIP2013中秋节模拟】表白(love)

    Description

    鸡腿是CZYZ的著名DS,但是不想追妹子的DS不是好GFS,所以鸡腿想通过表白来达到他追到妹子的目的!虽然你对鸡腿很无语,但是故事的设定是你帮助鸡腿找到了妹子,所以现在你必须帮助鸡腿安排表白来实现故事的结局 !
    鸡腿想到了一个很高(sha)明(bi)的做法,那就是去找人来组成表白队伍来增强气势 !鸡腿有很多好基友来帮忙,鸡腿数了数一共有N个人。但是鸡腿觉得大家排成两队来比较好看,而且鸡腿经过计算,第一队N1个人,第二队N2个人是最佳的队伍。问题来了...有些好基友们虽然很好心但是可能造成不好的影响(形象猥琐),所以鸡腿就给每个人打了分。Q1i表示第i个好基友排到第一队里时的好影响,C1i表示第i个好基友排到第一队里时的不良影响,Q2i表示第i个好基友排到第二队里时的好影响,C2i表示第i个好基友排到第二队里时的不良影响。请给鸡腿一种安排使得Q的和与C的和的比值最大,给出最大值。

    Input

    第一行给出三个整数N、N1、N2。
    第2到N+1行,每行四个整数Q1,C1,Q2,C2。

    Output

    一行输出一个小数d表示最优化比例是d(保留6位小数)

    Sample Input

    5 2 2
    12 5 8 3
    9 4 9 4
    7 3 16 6
    11 5 7 5
    18 10 6 3

    Sample Output

    2.444444

    Data Constraint

    对于50%的数据0 < N1 + N2 ≤ N ≤ 50;
    对于100%的数据0 < N1 + N2 ≤ N ≤ 500,1 ≤ Q1, Q2 ≤ 2000,1 ≤ C1, C2 ≤ 50。

    题解

    这题是一道经典的分数规划
    我们简化一下题意,题目要求我们求的其实就是如下式子:

    [max(frac{sum{q1*k1}+sum{q2*k2}}{sum{c1*k1}+sum{c2*k2}})(k1in{n},k2in{n}且{k1}cap{k2}=varnothing) ]

    (varnothing)表示空集)
    然后我们可以二分答案,设当前二分出的答案为(t),式子满足要求即为:

    [frac{sum{q1*k1}+sum{q2*k2}}{sum{c1*k1}+sum{c2*k2}}ge{t} ]

    将分数线下面的部分移到右边:

    [{sum{q1*k1}+sum{q2*k2}}ge{t}*({sum{c1*k1}+sum{c2*k2}}) ]

    乘法分配律得:

    [{sum{q1*k1}+sum{q2*k2}}ge[{(sum{c1*k1)}*t+(sum{c2*k2}})*t] ]

    再把右边移到左边:

    [{sum{(q1-c1*t)*k1}+sum{(q2-c2*t)*k2}}ge0 ]

    然后我们来看如何在(O(n^2))的时间复杂度之内(或左右)来判断答案是否合法
    显然我们可以按照每个人的((q1-c1*t)-(q2-c2*t))来从大到小排序,越往前的就说明在队伍1的贡献大,越往后的就说明在队伍2的贡献大
    于是我们设一个DP,设(f[i][j][0])表示前(i)个选了(j)个人进第一队的最大贡献,(f[i][j][1])表示后(i)个人选了(j)个人进第二队的最大贡献(转移方程很简单,这里就不在叙述了,详见代码)
    然后当有(f[i][n1][0]+f[n-i][n2][1]ge0)时就表示当前的(t)合法了

    CODE

    #include<cstdio>
    #include<string>
    #include<algorithm>
    #include<cstring>
    #define max(a,b) (((a)>(b))?(a):(b))
    #define min(a,b) (((a)<(b))?(a):(b))
    #define R register int
    #define N 505
    #define ll long long
    #define EPS 0.000000001
    using namespace std;
    struct arr{double q,c;}a[N],b[N];
    struct arr2{double a,b;}c[N];
    double ans,f[N][N][2]; 
    int n,n1,n2;
    inline void read(int &x)
    {
    	x=0;int f=1;char ch=getchar();
    	while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
    	while (isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();x*=f;
    }
    inline bool cmp(arr2 x,arr2 y) {return x.a-x.b>y.a-y.b;}
    inline bool pd(double k)
    {
    	for (R i=1;i<=n;++i)
    	{
    		c[i].a=a[i].q-a[i].c*k;c[i].b=b[i].q-b[i].c*k;
    	}
    	sort(c+1,c+1+n,cmp);
    	memset(f,0,sizeof(0));
    	for (R i=1;i<=n;++i)
    		for (R j=1;j<=min(i,n1);++j)
    		{
    			f[i][j][0]=f[i-1][j-1][0]+c[i].a;
    			if (i-1>=j) f[i][j][0]=max(f[i][j][0],f[i-1][j][0]);
    		}
    	for (R i=n;i;--i)
    		for (R j=1;j<=min(n-i+1,n2);++j)
    		{
    			f[n-i+1][j][1]=f[n-i][j-1][1]+c[i].b;
    			if (n-i>=j) f[n-i+1][j][1]=max(f[n-i+1][j][1],f[n-i][j][1]); 
    		}
    	for (R i=n1;i<=n-n2;++i)
    		if (f[i][n1][0]+f[n-i][n2][1]>=0) return 1;
    	return 0;
    }
    int main()
    {
    	freopen("love.in","r",stdin);
    	freopen("love.out","w",stdout);
    	read(n);read(n1);read(n2);
    	for (R i=1;i<=n;++i)
    	{
    		scanf("%lf%lf%lf%lf",&a[i].q,&a[i].c,&b[i].q,&b[i].c);
    	}
    	double l=0,r=10000000;
    	while (l+EPS<r)
    	{
    		double mid=(l+r)/2;
    		if (pd(mid)) l=mid,ans=mid;else r=mid;
    	}
    	printf("%.6lf
    ",ans);
    	return 0;
    }
    
  • 相关阅读:
    以您熟悉的编程语言为例完成一个hello/hi的简单的网络聊天程序——网络程序设计课第二次作业
    逆波兰表达式改写(C++)
    侯捷老师的C++代码:基于对象的类别之二带指针的成员函数 Mystring实现
    侯捷老师的C++代码: 基于对象之一 无指针类型 复数类实现
    雇员记录系统(C++)
    设计模式-Interpreter(行为模式) 使用解释器给用户提供一个一门定义语言的语法表示的解释器,通过该解释器解释语言中的句子。
    设计模式-Iterator(行为模式) 将聚合的遍历封装到一个类中
    设计模式-Chain of Responsibility (行为模式) 降低系统的耦合性
    设计模式-Visitor(行为模式) 一个类在不修改自己的同时增加了新的操作,存在问题是 1:破坏了封装性 2:扩展困难
    设计模式-Command(行为模式) 将一个请求封装到一个Command类中,提供一个处理对象Receiver,将Command由Invoker激活。
  • 原文地址:https://www.cnblogs.com/CMC-YXY/p/15013738.html
Copyright © 2020-2023  润新知