• 离散化+圆直线交点+转化——icpc cerc 2019 D


    题目明明写的是线段和圆。。实际上是直线和圆,白白讨论了很多情况。。

    这种转化老套路了

    #include<bits/stdc++.h>
    using namespace std;
    typedef double db;
    const db eps=1e-8;
    const db pi=acos(-1);
    int sign(db k){
        if (k>eps) return 1; else if (k<-eps) return -1; return 0;
    }
    int cmp(db k1,db k2){return sign(k1-k2);}
    int inmid(db k1,db k2,db k3){return sign(k1-k3)*sign(k2-k3)<=0;}// k3 在 [k1,k2] 内 
    struct point{
        db x,y;
        point operator + (const point &k1) const{return (point){k1.x+x,k1.y+y};}
        point operator - (const point &k1) const{return (point){x-k1.x,y-k1.y};}
        point operator * (db k1) const{return (point){x*k1,y*k1};}
        point operator / (db k1) const{return (point){x/k1,y/k1};}
        int operator == (const point &k1) const{return cmp(x,k1.x)==0&&cmp(y,k1.y)==0;}
        // 逆时针旋转 
        point turn(db k1){return (point){x*cos(k1)-y*sin(k1),x*sin(k1)+y*cos(k1)};}
        point turn90(){return (point){-y,x};}
        bool operator < (const point k1) const{
            int a=cmp(x,k1.x);
            if (a==-1) return 1; else if (a==1) return 0; else return cmp(y,k1.y)==-1;
        }
        db abs(){return sqrt(x*x+y*y);}
        db abs2(){return x*x+y*y;}
        db dis(point k1){return ((*this)-k1).abs();}
        point unit(){db w=abs(); return (point){x/w,y/w};}
    };
    int inmid(point k1,point k2,point k3){return inmid(k1.x,k2.x,k3.x)&&inmid(k1.y,k2.y,k3.y);}
    db cross(point k1,point k2){return k1.x*k2.y-k1.y*k2.x;}
    db dot(point k1,point k2){return k1.x*k2.x+k1.y*k2.y;}
    db rad(point k1,point k2){return atan2(cross(k1,k2),dot(k1,k2));} 
    struct circle{
        point o; db r;
        int inside(point k){
            if(sign(k.dis(o)-r)<=0)return 1;
            return 0;
        }
    };
    point proj(point k1,point k2,point q){ // q 到直线 k1,k2 的投影 
        point k=k2-k1; return k1+k*(dot(q-k1,k)/k.abs2());
    }
    vector<point> getCL(circle k1,point k2,point k3){ // 求直线和圆的交点,沿着 k2->k3 方向给出 , 相切给出两个 
        point k=proj(k2,k3,k1.o); db d=k1.r*k1.r-(k-k1.o).abs2();
        if (sign(d)==-1) return {};
        point del=(k3-k2).unit()*sqrt(max((db)0.0,d)); return {k-del,k+del};
    }
    
    point A,B;
    circle c;
    int n;
    db R;
    
    vector<pair<point,int> >v;
    
    //离源点远的排在后面 
    bool cmp1(pair<point,int> a, pair<point,int> b){
        if(a.first==b.first)return a.second>b.second;
        if(a.first.x==b.first.x)return a.first.y<b.first.y;
        return a.first.x<b.first.x;
    }
    
    int main(){
        //freopen("01.in","r",stdin);
        cin>>n>>R>>B.x>>B.y;
        A.x=A.y=0;c.r=R;
        for(int i=1;i<=n;i++){
            scanf("%lf%lf",&c.o.x,&c.o.y);
            vector<point> res=getCL(c,A,B);
            if(!res.size())continue;
            v.push_back(make_pair(res[0],1));
            v.push_back(make_pair(res[1],-1));
        }
        sort(v.begin(),v.end(),cmp1);
        int ans=0,now=0;
        for(int i=0;i<v.size();i++){
            now+=v[i].second;
            ans=max(ans,now);
        }
        now=0;
        for(int i=v.size()-1;i>=0;i--){
            now+=v[i].second;
            ans=max(ans,now);
        } 
        cout<<ans<<'
    ';
    }
  • 相关阅读:
    给读者、学生、初学者的话(不管你买哪一本计算机书,都适用)
    [回忆]我是怎么落进「写程序」这个大火坑的?
    CF1093E [Intersection of Permutations]
    CF712E [Memort and Casinos]
    CF1093G [Multidimensional Queries]
    FFT与一些冷门问题
    平面图转对偶图&19_03_21校内训练 [Everfeel]
    19_03_26校内训练[魔法卡片]
    洛谷 P4515 [COCI20092010#6] XOR
    NTT模板(无讲解)
  • 原文地址:https://www.cnblogs.com/zsben991126/p/12907143.html
Copyright © 2020-2023  润新知