• 计算几何——判线段规范相交+最短路zoj1721


    枚举每个端点,然后i点j点连线作为一条路径,逐一判断这条路径是否可行即可

    注意的地方:判一条线段是否可行,需要判其余线段是否和其相交,但是这个相交比较难判(因为会不规范相交),所以将问题转化为墙以外的线是否和其相交,所有墙以外的线都要和其相交!

    //判断线段相交
    bool inter(Line l1,Line l2)
    {
        return 
            max(l1.s.x,l1.e.x) > min(l2.s.x,l2.e.x) &&
            max(l2.s.x,l2.e.x) > min(l1.s.x,l1.e.x) &&
            max(l1.s.y,l1.e.y) > min(l2.s.y,l2.e.y) &&
            max(l2.s.y,l2.e.y) > min(l1.s.y,l1.e.y) &&
            sgn((l2.s-l1.s)^(l1.e-l1.s))*sgn((l2.e-l1.s)^(l1.e-l1.s)) < 0 &&
            sgn((l1.s-l2.s)^(l2.e-l2.s))*sgn((l1.e-l2.s)^(l2.e-l2.s)) < 0;
    }
    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #include <queue>
    #include <map>
    #include <vector>
    #include <set>
    #include <string>
    #include <math.h>
    
    using namespace std;
    
    const double eps = 1e-8;
    int sgn(double x)
    {
        if(fabs(x) < eps)return 0;
        if(x < 0) return -1;
        else return 1;
    }
    struct Point
    {
        double x,y;
        Point(){}
        Point(double _x,double _y)
        {
            x = _x;y = _y;
        }
        Point operator -(const Point &b)const
        {
            return Point(x - b.x,y - b.y);
        }
        double operator ^(const Point &b)const
        {
            return x*b.y - y*b.x;
        }
        double operator *(const Point &b)const
        {
            return x*b.x + y*b.y;
        }
    };
    struct Line
    {
        Point s,e;
        Line(){}
        Line(Point _s,Point _e)
        {
            s = _s;e = _e;
        }
    };
    //判断线段相交
    bool inter(Line l1,Line l2)
    {
        return 
            max(l1.s.x,l1.e.x) > min(l2.s.x,l2.e.x) &&
            max(l2.s.x,l2.e.x) > min(l1.s.x,l1.e.x) &&
            max(l1.s.y,l1.e.y) > min(l2.s.y,l2.e.y) &&
            max(l2.s.y,l2.e.y) > min(l1.s.y,l1.e.y) &&
            sgn((l2.s-l1.s)^(l1.e-l1.s))*sgn((l2.e-l1.s)^(l1.e-l1.s)) < 0 &&
            sgn((l1.s-l2.s)^(l2.e-l2.s))*sgn((l1.e-l2.s)^(l2.e-l2.s)) < 0;
    }
    double dist(Point a,Point b)
    {
        return sqrt((b-a)*(b-a));
    }
    const int MAXN = 500;
    Line line[MAXN<<2];
    Point p[MAXN<<2];
    double dis[MAXN][MAXN];
    const double INF = 1e20;
    int n;
    
    int check(Line tmp){
        for(int i=1;i<=3*n;i++)
            if(inter(tmp,line[i]))return 0;
        return 1;
    }
    
    int main(){
        double x,y1,y2,y3,y4;
        while(scanf("%d",&n) == 1)
        {
            if(n == -1) break;
            p[0]=Point(0,5),p[4*n+1]=Point(10,5);
            for(int i = 1;i <= n;i++)
            {
                scanf("%lf%lf%lf%lf%lf",&x,&y1,&y2,&y3,&y4);
                line[3*i-2] = Line(Point(x,0),Point(x,y1));
                line[3*i-1] = Line(Point(x,y2),Point(x,y3));
                line[3*i] = Line(Point(x,y4),Point(x,10));
                p[4*i-3]=Point(x,y1);
                p[4*i-2]=Point(x,y2);
                p[4*i-1]=Point(x,y3);
                p[4*i]=Point(x,y4);
            }
            for(int i = 0;i <= 4*n+1;i++)
                for(int j = 0;j <= 4*n+1;j++)
                {
                    if(i == j)dis[i][j] = 0;
                    else dis[i][j] = INF;
                }
            
            for(int i=0;i<=4*n+1;i++)
                for(int j=i+1;j<=4*n+1;j++){
                    Line tmp=Line(p[i],p[j]);
                    if(check(tmp))
                        dis[i][j]=dis[j][i]=dist(p[i],p[j]);
                }
            
            for(int k = 0;k <= 4*n+1;k++)
                for(int i = 0;i <= 4*n+1;i++)
                    for(int j = 0;j <= 4*n+1;j++)
                        if(dis[i][k] + dis[k][j] < dis[i][j])
                            dis[i][j] = dis[i][k] + dis[k][j];
            printf("%.2lf
    ",dis[0][4*n+1]);
        }
        
        return 0;
    }
  • 相关阅读:
    UnityShaderVariant的一些探究心得
    NGUI在使用AssetBubble 出现材质丢失错误的情况
    [转] unity调试lua工具和方法
    各种文件的mime类型
    Javascript 随机数
    jQuery文字上下滚动
    Asp.Net Color转换
    Asp.Net 清除Html标签
    jQuery Ajax实例
    Asp.Net Cookie用法
  • 原文地址:https://www.cnblogs.com/zsben991126/p/10923721.html
Copyright © 2020-2023  润新知