• I


    题目链接:https://vjudge.net/problem/HDU-6814

    题意:在[1,n]中随机取三个数a,b,c作为直角四面体的三条直角棱,求顶点d到ABC面的高的倒数平方的数学期望。

    思路:

      1 //#include<bits/stdc++.h>
      2 #include<time.h>
      3 #include <set>
      4 #include <map>
      5 #include <stack>
      6 #include <cmath>
      7 #include <queue>
      8 #include <cstdio>
      9 #include <string>
     10 #include <vector>
     11 #include <cstring>
     12 #include <utility>
     13 #include <cstring>
     14 #include <iostream>
     15 #include <algorithm>
     16 #include <list>
     17 using namespace std;
     18 #define eps 1e-10
     19 #define PI acos(-1.0)
     20 #define lowbit(x) ((x)&(-x))
     21 #define zero(x) (((x)>0?(x):-(x))<eps)
     22 #define mem(s,n) memset(s,n,sizeof s);
     23 #define ios {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);}
     24 typedef long long ll;
     25 typedef unsigned long long ull;
     26 const int maxn=6e6+5;
     27 const int Inf=0x7f7f7f7f;
     28 const ll Mod=1e9+7;
     29 const int N=3e3+5;
     30 bool isPowerOfTwo(int n) { return n > 0 && (n & (n - 1)) == 0; }//判断一个数是不是 2 的正整数次幂
     31 int modPowerOfTwo(int x, int mod) { return x & (mod - 1); }//对 2 的非负整数次幂取模
     32 int getBit(int a, int b) { return (a >> b) & 1; }// 获取 a 的第 b 位,最低位编号为 0
     33 int Max(int a, int b) { return b & ((a - b) >> 31) | a & (~(a - b) >> 31); }// 如果 a>=b,(a-b)>>31 为 0,否则为 -1
     34 int Min(int a, int b) { return a & ((a - b) >> 31) | b & (~(a - b) >> 31); }
     35 ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
     36 ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
     37 int Abs(int n) {
     38   return (n ^ (n >> 31)) - (n >> 31);
     39   /* n>>31 取得 n 的符号,若 n 为正数,n>>31 等于 0,若 n 为负数,n>>31 等于 -1
     40      若 n 为正数 n^0=n, 数不变,若 n 为负数有 n^(-1)
     41      需要计算 n 和 -1 的补码,然后进行异或运算,
     42      结果 n 变号并且为 n 的绝对值减 1,再减去 -1 就是绝对值 */
     43 }
     44 ll binpow(ll a, ll b,ll c) {
     45   ll res = 1;
     46   while (b > 0) {
     47     if (b & 1) res = res * a%c;
     48     a = a * a%c;
     49     b >>= 1;
     50   }
     51   return res%c;
     52 }
     53 void extend_gcd(ll a,ll b,ll &x,ll &y)
     54 {
     55     if(b==0) {
     56         x=1,y=0;
     57         return;
     58     }
     59     extend_gcd(b,a%b,x,y);
     60     ll tmp=x;
     61     x=y;
     62     y=tmp-(a/b)*y;
     63 }
     64 ll mod_inverse(ll a,ll m)
     65 {
     66     ll x,y;
     67     extend_gcd(a,m,x,y);
     68     return (m+x%m)%m;
     69 }
     70 ll eulor(ll x)
     71 {
     72    ll cnt=x;
     73    ll ma=sqrt(x);
     74    for(int i=2;i<=ma;i++)
     75    {
     76     if(x%i==0) cnt=cnt/i*(i-1);
     77     while(x%i==0) x/=i;
     78    }
     79    if(x>1) cnt=cnt/x*(x-1);
     80    return cnt;
     81 }
     82 int mod=998244353;
     83 ll a[maxn],b[maxn];
     84 void f()
     85 {
     86     a[1]=1;
     87     b[1]=1;
     88     for(int i=2;i<maxn;i++)
     89     {
     90         a[i]=(mod-mod/i)*a[mod%i]%mod;
     91         b[i]=(b[i-1]+a[i]*a[i]%mod)%mod;
     92     }
     93 }
     94 int main()
     95 {
     96     int t;
     97     f();
     98     scanf("%d",&t);
     99     while(t--)
    100     {
    101       int n;
    102       scanf("%d",&n);
    103       printf("%lld
    ",3*a[n]*b[n]%mod);
    104     }
    105     return 0;
    106 }
    View Code
  • 相关阅读:
    解决Access查询不区分大小写问题
    截取控件为图片
    解决VS+opencv中Debug版本与Release版本lib切换的问题
    OpenCv Mat操作总结
    机器学习实战-python相关软件库的安装
    图像数据归一化
    图像分割算法-GraphSeg算法
    Image Blending
    图像分割-图割理论与应用学习
    如何查看OpenCv的源代码
  • 原文地址:https://www.cnblogs.com/zpj61/p/13492340.html
Copyright © 2020-2023  润新知