• HBase Filter 过滤器之 DependentColumnFilter 详解


    前言:本文详细介绍了 HBase DependentColumnFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考。DependentColumnFilter 也称参考列过滤器,是一种允许用户指定一个参考列或引用列来过滤其他列的过滤器,过滤的原则是基于参考列的时间戳来进行筛选。

    该过滤器尝试找到该列所在的每一行,并返回该行具有相同时间戳的全部键值对;如果某行不包含这个指定的列,则什么都不返回。参数dropDependentColumn 决定参考列被返回还是丢弃,为true时表示参考列被返回,为false时表示被丢弃。可以把DependentColumnFilter理解为一个valueFilter和一个时间戳过滤器的组合。如果想要获取同一时间线的数据可以考虑使用此过滤器。比较器细节及原理请参照之前的更文:HBase Filter 过滤器之比较器 Comparator 原理及源码学习

    一。Java Api

    头部代码

    public class DependentColumnFilterDemo {
    
        private static boolean isok = false;
        private static String tableName = "test";
        private static String[] cfs = new String[]{"f1", "f2"};
        private static String[] data1 = new String[]{"row-1:f2:c3:1234abc56", "row-3:f1:c3:1234321"};
        private static String[] data2 = new String[]{
                "row-1:f1:c1:abcdefg", "row-1:f2:c2:abc", "row-2:f1:c1:abc123456", "row-2:f2:c2:1234abc567"
        };
    
        public static void main(String[] args) throws IOException, InterruptedException {
    
            MyBase myBase = new MyBase();
            Connection connection = myBase.createConnection();
            if (isok) {
                myBase.deleteTable(connection, tableName);
                myBase.createTable(connection, tableName, cfs);
                // 造数据
                myBase.putRows(connection, tableName, data1);  // 第一批数据
                Thread.sleep(10);
                myBase.putRows(connection, tableName, data2);  // 第二批数据
            }
            Table table = connection.getTable(TableName.valueOf(tableName));
            Scan scan = new Scan();
    

    中部代码
    向右滑动滚动条可查看输出结果。

            // 构造方法一
            DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"));  // [row-1:f1:c1:abcdefg, row-1:f2:c2:abc, row-2:f1:c1:abc123456, row-2:f2:c2:1234abc567]
    
            // 构造方法二 boolean dropDependentColumn=true
            DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), true);  // [row-1:f2:c2:abc, row-2:f2:c2:1234abc567]
    
            // 构造方法二 boolean dropDependentColumn=false  默认为false
            DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false); // [row-1:f1:c1:abcdefg, row-1:f2:c2:abc, row-2:f1:c1:abc123456, row-2:f2:c2:1234abc567]
    
            // 构造方法三 + BinaryComparator 比较器过滤数据
            DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,
                    CompareFilter.CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes("abcdefg"))); // [row-1:f1:c1:abcdefg, row-1:f2:c2:abc]
    
            // 构造方法三 + BinaryPrefixComparator 比较器过滤数据
            DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,
                    CompareFilter.CompareOp.EQUAL, new BinaryPrefixComparator(Bytes.toBytes("abc")));  // [row-1:f1:c1:abcdefg, row-1:f2:c2:abc, row-2:f1:c1:abc123456, row-2:f2:c2:1234abc567]
    
            // 构造方法三 + SubstringComparator 比较器过滤数据
            DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,
                    CompareFilter.CompareOp.EQUAL, new SubstringComparator("1234"));  // [row-2:f1:c1:abc123456, row-2:f2:c2:1234abc567]
    
            // 构造方法三 + RegexStringComparator 比较器过滤数据
            DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,
                    CompareFilter.CompareOp.EQUAL, new RegexStringComparator("[a-z]"));  // [row-1:f1:c1:abcdefg, row-1:f2:c2:abc, row-2:f1:c1:abc123456, row-2:f2:c2:1234abc567]
    
            // 构造方法三 + RegexStringComparator 比较器过滤数据
            DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,
                    CompareFilter.CompareOp.EQUAL, new RegexStringComparator("1234[a-z]"));  // []  思考题:与上例对比,想想为什么为空?
    
    

    该过滤器同时也支持各比较器的不同比较语法,同之前介绍的各种过滤器是一样的,这里不再一一举例了。

    尾部代码

    		scan.setFilter(filter);
            ResultScanner scanner = table.getScanner(scan);
            Iterator<Result> iterator = scanner.iterator();
            LinkedList<String> keys = new LinkedList<>();
            while (iterator.hasNext()) {
                String key = "";
                Result result = iterator.next();
                for (Cell cell : result.rawCells()) {
                    byte[] rowkey = CellUtil.cloneRow(cell);
                    byte[] family = CellUtil.cloneFamily(cell);
                    byte[] column = CellUtil.cloneQualifier(cell);
                    byte[] value = CellUtil.cloneValue(cell);
                    key = Bytes.toString(rowkey) + ":" + Bytes.toString(family) + ":" + Bytes.toString(column) + ":" + Bytes.toString(value);
                    keys.add(key);
                }
            }
            System.out.println(keys);
            scanner.close();
            table.close();
            connection.close();
        }
    }
    

    二。Shell Api

    HBase test 表数据一览:

    hbase(main):009:0> scan 'test'
    ROW                                              COLUMN+CELL
     row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
     row-1                                           column=f2:c3, timestamp=1589794115241, value=1234abc56
     row-2                                           column=f1:c1, timestamp=1589794115268, value=abc123456
     row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
     row-3                                           column=f1:c3, timestamp=1589794115241, value=1234321
    3 row(s) in 0.0280 seconds
    

    0. 简单构造方法

    hbase(main):006:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1')"}
    ROW                                              COLUMN+CELL
     row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
     row-2                                           column=f1:c1, timestamp=1589794115268, value=abc123456
     row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
    2 row(s) in 0.0450 seconds
    
    hbase(main):008:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1',false)"}
    ROW                                              COLUMN+CELL
     row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
     row-2                                           column=f1:c1, timestamp=1589794115268, value=abc123456
     row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
    2 row(s) in 0.0310 seconds
    
    hbase(main):007:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1',true)"}
    ROW                                              COLUMN+CELL
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
     row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
    2 row(s) in 0.0250 seconds
    

    1. BinaryComparator 构造过滤器

    方式一:

    hbase(main):004:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1',false,=,'binary:abcdefg')"}
    ROW                                              COLUMN+CELL
     row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
    1 row(s) in 0.0330 seconds
    
    hbase(main):005:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1',true,=,'binary:abcdefg')"}
    ROW                                              COLUMN+CELL
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
    1 row(s) in 0.0120 seconds
    

    支持的比较运算符:= != > >= < <=,不再一一举例。

    方式二:

    import org.apache.hadoop.hbase.filter.CompareFilter
    import org.apache.hadoop.hbase.filter.BinaryComparator
    import org.apache.hadoop.hbase.filter.DependentColumnFilter
    
    hbase(main):016:0> scan 'test',{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,CompareFilter::CompareOp.valueOf('EQUAL'), BinaryComparator.new(Bytes.toBytes('abcdefg')))}
    ROW                                              COLUMN+CELL
     row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
    1 row(s) in 0.0170 seconds
    
    hbase(main):017:0> scan 'test',{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), true,CompareFilter::CompareOp.valueOf('EQUAL'), BinaryComparator.new(Bytes.toBytes('abcdefg')))}
    ROW                                              COLUMN+CELL
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
    1 row(s) in 0.0140 seconds
    

    支持的比较运算符:LESS、LESS_OR_EQUAL、EQUAL、NOT_EQUAL、GREATER、GREATER_OR_EQUAL,不再一一举例。

    推荐使用方式一,更简洁方便。

    2. BinaryPrefixComparator 构造过滤器

    方式一:

    hbase(main):019:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1',false,=,'binaryprefix:abc')"}
    ROW                                              COLUMN+CELL
     row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
     row-2                                           column=f1:c1, timestamp=1589794115268, value=abc123456
     row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
    2 row(s) in 0.0330 seconds
    
    hbase(main):020:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1',true,=,'binaryprefix:abc')"}
    ROW                                              COLUMN+CELL
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
     row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
    2 row(s) in 0.0600 seconds
    

    方式二:

    import org.apache.hadoop.hbase.filter.CompareFilter
    import org.apache.hadoop.hbase.filter.BinaryPrefixComparator
    import org.apache.hadoop.hbase.filter.DependentColumnFilter
    
    hbase(main):023:0> scan 'test',{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,CompareFilter::CompareOp.valueOf('EQUAL'), BinaryPrefixComparator.new(Bytes.toBytes('abc')))}
    ROW                                              COLUMN+CELL
     row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
     row-2                                           column=f1:c1, timestamp=1589794115268, value=abc123456
     row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
    2 row(s) in 0.0180 seconds
    
    hbase(main):022:0> scan 'test',{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), true,CompareFilter::CompareOp.valueOf('EQUAL'), BinaryPrefixComparator.new(Bytes.toBytes('abc')))}
    ROW                                              COLUMN+CELL
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
     row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
    2 row(s) in 0.0190 seconds
    

    其它同上。

    3. SubstringComparator 构造过滤器

    方式一:

    hbase(main):025:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1',false,=,'substring:abc')"}
    ROW                                              COLUMN+CELL
     row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
     row-2                                           column=f1:c1, timestamp=1589794115268, value=abc123456
     row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
    2 row(s) in 0.0340 seconds
    
    hbase(main):024:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1',true,=,'substring:abc')"}
    ROW                                              COLUMN+CELL
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
     row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
    2 row(s) in 0.0160 seconds
    

    方式二:

    import org.apache.hadoop.hbase.filter.CompareFilter
    import org.apache.hadoop.hbase.filter.SubstringComparator
    import org.apache.hadoop.hbase.filter.DependentColumnFilter
    
    hbase(main):028:0> scan 'test',{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('abc'))}
    ROW                                              COLUMN+CELL
     row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
     row-2                                           column=f1:c1, timestamp=1589794115268, value=abc123456
     row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
    2 row(s) in 0.0150 seconds
    
    hbase(main):029:0> scan 'test',{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), true,CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('abc'))}
    ROW                                              COLUMN+CELL
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
     row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
    2 row(s) in 0.0170 seconds
    

    区别于上的是这里直接传入字符串进行比较,且只支持EQUALNOT_EQUAL两种比较符。

    4. RegexStringComparator 构造过滤器

    import org.apache.hadoop.hbase.filter.CompareFilter
    import org.apache.hadoop.hbase.filter.RegexStringComparator
    import org.apache.hadoop.hbase.filter.DependentColumnFilter
    
    hbase(main):035:0> scan 'test',{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,CompareFilter::CompareOp.valueOf('EQUAL'), RegexStringComparator.new('[a-z]'))}
    ROW                                              COLUMN+CELL
     row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
     row-2                                           column=f1:c1, timestamp=1589794115268, value=abc123456
     row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
    2 row(s) in 0.0170 seconds
    
    hbase(main):034:0* scan 'test',{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), true,CompareFilter::CompareOp.valueOf('EQUAL'), RegexStringComparator.new('[a-z]'))}
    ROW                                              COLUMN+CELL
     row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
     row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
    2 row(s) in 0.0150 seconds
    

    该比较器直接传入字符串进行比较,且只支持EQUALNOT_EQUAL两种比较符。若想使用第一种方式可以传入regexstring试一下,我的版本有点低暂时不支持,不再演示了。

    注意这里的正则匹配指包含关系,对应底层find()方法。

    DependentColumnFilter不支持使用LongComparator比较器,且BitComparatorNullComparator比较器用之甚少,也不再介绍。

    到此为止,所有的比较过滤器就总结完毕了。

    查看文章全部源代码请访以下GitHub地址:

    https://github.com/zhoupengbo/demos-bigdata/blob/master/hbase/hbase-filters-demos/src/main/java/com/zpb/demos/DependentColumnFilterDemo.java
    

    扫描二维码关注博主公众号

    转载请注明出处!欢迎关注本人微信公众号【HBase工作笔记】

  • 相关阅读:
    对于字符串的重复字符的去除
    487-3279
    队列设计(转)
    动态创建JS
    前端技巧:禁止浏览器static files缓存篇(转)
    cas与NGINX整合(转)
    秒杀场景下MySQL的低效(转)
    html禁用缓存
    MD5随机盐值生成法
    SVN There are unfinished transactions detected
  • 原文地址:https://www.cnblogs.com/zpb2016/p/12921448.html
Copyright © 2020-2023  润新知