• Redundant Paths 分离的路径


    Redundant Paths 分离的路径

    题目描述

    为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分离的路径,这样她们就有多一些选择.
    每对草场之间已经有至少一条路径.给出所有R(F-1≤R≤10000)条双向路的描述,每条路连接了两个不同的草场,请计算最少的新建道路的数量, 路径由若干道路首尾相连而成.两条路径相互分离,是指两条路径没有一条重合的道路.但是,两条分离的路径上可以有一些相同的草场. 对于同一对草场之间,可能已经有两条不同的道路,你也可以在它们之间再建一条道路,作为另一条不同的道路.

    输入格式

    第1行输入F和R,接下来R行,每行输入两个整数,表示两个草场,它们之间有一条道路.

    输出格式

    最少的需要新建的道路数.

    首先我们容易得出一个结论,环上任意两点都有两条分离路径

    然后我们如果将这个图缩点后将会得到一个新图,(先缩点为敬)

    我们需要添加路径使变成边双连通图,边双连通图上每一条边都一定在一个环内,我们让每两个叶子节点连边使它构成环就行了。

    那么问题就变成了求叶子节点个数。

    然后如果叶子数为奇数我们需要再将这个点与任意一个点相连。(叶子+1)/2就完了

    如果为偶数直接就是(叶子)/2

    #include<bits/stdc++.h>
    #define ll long long
    #define A 2000000
    #define read(a) scanf("%lld",&a)
    #define put(a) printf("%lld
    ",a)
    using namespace std;
    map<pair<ll,ll>,bool> mp;
    ll low[A],size[A],dfn[A],head[A],ver[A],nxt[A],cut[A],ans[A],sz[A];
    ll ver2[A],nxt2[A],head2[A],out[A],belong[A],sta[A],ru[A],sb=0;
    string s;
    bool ins[A],flag[A],via[A];
    vector<ll> scc[A];
    ll n,m,num=0,root,top=0,tot=0,tot2=0,sum=0,cnt=0;
    void add2(ll x,ll y){
        ver2[++tot2]=y;nxt2[tot2]=head2[x];head2[x]=tot2;out[x]++;ru[y]++;return ;
    }
    void add(ll x,ll y){
        ver[++tot]=y;nxt[tot]=head[x];head[x]=tot;return ;
    }
    inline void rebuilt(){
        for(ll i=1;i<=n;i++){
            for(ll j=head[i];j;j=nxt[j]){
                ll y=ver[j];
                if(y!=i)
                if(belong[i]!=belong[y]/*&&*/)
                    add2(belong[i],belong[y])/*,,,printf("belong i=%lld,belong y=%lld
    ",belong[i],belong[y])*/;
            }
        }
    }
    void tarjan(ll x,ll pre){
        low[x]=dfn[x]=++num;
        sta[++top]=x;ins[x]=1;
        for(ll i=head[x];i;i=nxt[i]){
            ll y=ver[i];
            if(y==pre) continue;
            if(!dfn[y]){
                tarjan(y,x);
                low[x]=min(low[x],low[y]);
            }
            else if(ins[y]){
                low[x]=min(low[x],dfn[y]);
            }
        }
        if(dfn[x]==low[x]){
            ++cnt;ll yy=0;
            while(1){
                yy=sta[top--];
                ins[yy]=0;
                belong[yy]=cnt;
                sz[cnt]++;
                scc[cnt].push_back(yy);
                if(yy==x) break;
            }
        }
    }
    void shuchu()
    {
            for(ll i=1;i<=cnt;i++)
            {
    //            printf("第%lld个scc  size=%lld
    ",i,sz[i]);
                for(ll j=0;j<scc[i].size();j++)
                {
                    cout<<scc[i][j]<<" ";
                }
                cout<<endl;
            }
    }
    void dfs(ll x){
        flag[x]=1;if(ru[x]==1) sb++;
        for(ll i=head2[x];i;i=nxt2[i]){
    
            ll y=ver2[i];//        printf("x=%lld y=%lld outx=%lld
    ",x,y,out[x]);
            if(flag[y]) continue;
            dfs(y);
        }
    }
    int main(){
            read(n);read(m);
            for(ll i=1;i<=m;i++){
                ll xx,yy;read(xx),read(yy);
                if(!mp[make_pair(xx,yy)]&&!mp[make_pair(yy,xx)])
                {
                    add(xx,yy);add(yy,xx);mp[make_pair(xx,yy)]=1,mp[make_pair(yy,xx)]=1;
                }
            }
            for(ll i=1;i<=n;i++)
                if(!dfn[i])root=i,tarjan(i,0);        
            rebuilt();
    //        shuchu();
            for(ll i=1;i<=cnt;i++)
            {
    //            printf("ru%lld=%lld
    ",i,ru[i]);
                if(ru[i]==1) sb++;
            }
            cout<<(sb+1)/2<<endl;
    }
    View Code
    我已没有下降的余地
  • 相关阅读:
    ajax和axios的http请求及响应数据时候区别及拦截时候的方法,属性等
    超简单的抖音去水印原理教程
    Azure DevOps Server 的连接源(Artifacts):六、发布python程序(Twine pip)
    Azure DevOps Server 的连接源(Artifacts):五、python包管理pip和twine
    更改Azure DevOps Server的原生界面(七、禁用浏览器下载和以zip格式下载文件)
    Azure DevOps Server 的连接源(Artifacts):九、vue示例和自动打包
    Azure DevOps Server 的连接源(Artifacts):七、NPM 基础知识
    Azure DevOps Server 的连接源(Artifacts):二、NuGet包管理
    Azure DevOps Server 的连接源(Artifacts):四、python基础(Django、Flask)
    Azure DevOps Server 的连接源(Artifacts):一、概述
  • 原文地址:https://www.cnblogs.com/znsbc-13/p/11182979.html
Copyright © 2020-2023  润新知