• POJ 1050 To the Max


    http://poj.org/problem?id=1050

    Description

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
    As an example, the maximal sub-rectangle of the array: 

    0 -2 -7 0 
    9 2 -6 2 
    -4 1 -4 1 
    -1 8 0 -2 
    is in the lower left corner: 

    9 2 
    -4 1 
    -1 8 
    and has a sum of 15. 

    Input

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output

    Output the sum of the maximal sub-rectangle.

    Sample Input

    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4  1 -1
    
    8  0 -2

    Sample Output

    150

    代码:

    #include <iostream>
    #include <stdio.h>
    #include <math.h>
    #include <algorithm>
    using namespace std;
    
    const int maxn = 110;
    int N;
    int mp[maxn][maxn], sum[maxn][maxn];
    int maxx = -1e5;
    
    int Maxnum(int l, int r) {
        int c[maxn], dp[maxn];
        for(int i = 0; i < N; i ++)
            c[i] = sum[i][r] - sum[i][l - 1];
    
        dp[0] = c[0];
        int ans = max(ans, dp[0]);
        for(int i = 1; i < N; i ++) {
            dp[i] = max(dp[i - 1] + c[i], c[i]);
            ans = max(ans, dp[i]);
        }
        return ans;
    }
    
    int main() {
        scanf("%d", &N);
        for(int i = 0; i < N; i ++) {
            for(int j = 0; j < N; j ++) {
                scanf("%d", &mp[i][j]);
            }
        }
    
        for(int j = 0; j < N; j ++) {
            for(int i = 0; i < N; i ++) {
                if(i == 0) sum[j][i] = mp[i][j];
                else sum[j][i] = sum[j][i - 1] + mp[i][j];
            }
        }
    
        for(int i = 0; i < N; i ++) {
            for(int j = N - 1; j > i; j --) {
                maxx = max(maxx, Maxnum(i, j));
            }
        }
    
        printf("%d
    ", maxx);
    
        return 0;
    }
    

      枚举上下边界然后枚举最大子序列的值 $O(N^3)$ 时间复杂度

     

  • 相关阅读:
    CodeForces 460B
    CodeForces 456A
    CodeForces462B
    HDU1394(线段树||树状数组)
    HDU1541(树状数组)
    HDU1556(树状数组)
    HDU5726(RMQ&&二分)
    POJ1182(并查集)
    HDU4496(并查集)
    HDU3038(并查集)
  • 原文地址:https://www.cnblogs.com/zlrrrr/p/10764469.html
Copyright © 2020-2023  润新知