• 1043 Is It a Binary Search Tree (25 分)


    1043 Is It a Binary Search Tree (25 分)
     

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

    • The left subtree of a node contains only nodes with keys less than the node's key.
    • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
    • Both the left and right subtrees must also be binary search trees.

    If we swap the left and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST.

    Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (≤). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, first print in a line YES if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or NO if not. Then if the answer is YES, print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

    Sample Input 1:

    7
    8 6 5 7 10 8 11
    

    Sample Output 1:

    YES
    5 7 6 8 11 10 8
    

    Sample Input 2:

    7
    8 10 11 8 6 7 5
    

    Sample Output 2:

    YES
    11 8 10 7 5 6 8
    

    Sample Input 3:

    7
    8 6 8 5 10 9 11
    

    Sample Output 3:

    NO

    判断是否是是二叉搜索树或镜像二叉搜索树。

      1 #include <bits/stdc++.h>
      2 
      3 using namespace std;
      4 int n, an[1005];
      5 
      6 struct Node
      7 {
      8     int val;
      9     Node *left;
     10     Node *right;
     11 }*head;
     12 int pre[1005];
     13 int pos = 0;
     14 
     15 void insert(Node* &root, int x){
     16     if(root == NULL){
     17         root = new Node;
     18         root->val = x;
     19         root->left = NULL;
     20         root->right = NULL;
     21     }else{
     22         if(x < root->val){
     23             insert(root->left, x);
     24         }else{
     25             insert(root->right, x);
     26         }
     27     }
     28 }
     29 
     30 void prefind(Node * &root){
     31     if(root != NULL){
     32         pre[pos++] = root->val;
     33         prefind(root->left);
     34         prefind(root->right);
     35     }
     36 }
     37 
     38 void premirror(Node * &root){
     39     if(root != NULL){
     40         pre[pos++] = root->val;
     41         premirror(root->right);
     42         premirror(root->left);
     43     }
     44 }
     45 
     46 void behind(Node * &root){
     47     if(root != NULL){
     48         behind(root->left);
     49         behind(root->right);
     50         pre[pos++] = root->val;
     51     }
     52 }
     53 
     54 void mirror(Node * &root){
     55     if(root != NULL){
     56         mirror(root->right);
     57         mirror(root->left);
     58         pre[pos++] = root->val;
     59     }
     60 }
     61 
     62 
     63 int main(){
     64     cin >> n;
     65     for(int i = 0; i < n; i++){
     66         cin >> an[i];
     67         insert(head, an[i]);
     68     }
     69     bool flag = true;
     70     prefind(head);
     71     for(int i = 0; i < n; i++){
     72         if(pre[i] != an[i]){
     73             flag = false;
     74             break;
     75         }
     76     }
     77     memset(pre,0,sizeof(pre));
     78     if(flag){
     79         pos = 0;
     80         behind(head);
     81         cout <<"YES"<<endl;
     82         for(int i = 0; i < n; i++)
     83             printf("%d%c", pre[i], i==n-1?'
    ':' ');
     84         return 0;
     85     }
     86     pos = 0;
     87     flag = true;
     88     memset(pre,0,sizeof(pre));
     89     premirror(head);
     90     for(int i = 0; i < n; i++){
     91         if(pre[i] != an[i]){
     92             flag = false;
     93             break;
     94         }
     95     }
     96     memset(pre,0,sizeof(pre));
     97     if(flag){
     98         pos = 0;
     99         mirror(head);
    100         cout <<"YES"<<endl;
    101         for(int i = 0; i < n; i++)
    102             printf("%d%c", pre[i], i==n-1?'
    ':' ');
    103         return 0;
    104     }
    105     cout <<"NO"<<endl;
    106     return 0;
    107 }





  • 相关阅读:
    Javascript中this关键字详解
    Chrome 中的 JavaScript 断点设置和调试技巧
    将Sublime Text3添加到右键菜单中
    sublime text 3如何安装插件和设置字号
    sublime text 侧边栏样式修改
    JS中关于clientWidth offsetWidth scrollWidth 等的含义
    scrollWidth,clientWidth,offsetWidth的区别
    JS中apply和call的用法
    JS中的call()和apply()方法
    JAVA-初步认识-第四章-函数-Demo练习
  • 原文地址:https://www.cnblogs.com/zllwxm123/p/11156565.html
Copyright © 2020-2023  润新知