• 卡曼滤波python


    # Kalman filter example demo in Python
    # A Python implementation of the example given in pages 11-15 of "An
    # Introduction to the Kalman Filter" by Greg Welch and Gary Bishop,
    # University of North Carolina at Chapel Hill, Department of Computer
    # Science, TR 95-041,
    # http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
    # by Andrew D. Straw
    import numpy
    import pylab
    # intial parameters
    n_iter = 50
    sz = (n_iter,) # size of array
    x = -0.37727 # truth value (typo in example at top of p. 13 calls this z)
    z = numpy.random.normal(x,0.1,size=sz) # observations (normal about x, sigma=0.1)
    Q = 1e-5 # process variance
    # allocate space for arrays
    xhat=numpy.zeros(sz)      # a posteri estimate of x
    P=numpy.zeros(sz)         # a posteri error estimate
    xhatminus=numpy.zeros(sz) # a priori estimate of x
    Pminus=numpy.zeros(sz)    # a priori error estimate
    K=numpy.zeros(sz)         # gain or blending factor
    R = 0.1**2 # estimate of measurement variance, change to see effect
    # intial guesses
    xhat[0] = 0.0
    P[0] = 1.0
    for k in range(1,n_iter):
        # time update
        xhatminus[k] = xhat[k-1]
        Pminus[k] = P[k-1]+Q
        # measurement update
        K[k] = Pminus[k]/( Pminus[k]+R )
        xhat[k] = xhatminus[k]+K[k]*(z[k]-xhatminus[k])
        P[k] = (1-K[k])*Pminus[k]
    pylab.figure()
    pylab.plot(z,'k+',label='noisy measurements')
    pylab.plot(xhat,'b-',label='a posteri estimate')
    pylab.axhline(x,color='g',label='truth value')
    pylab.legend()
    pylab.xlabel('Iteration')
    pylab.ylabel('Voltage')
    pylab.figure()
    valid_iter = range(1,n_iter) # Pminus not valid at step 0
    pylab.plot(valid_iter,Pminus[valid_iter],label='a priori error estimate')
    pylab.xlabel('Iteration')
    pylab.ylabel('$(Voltage)^2$')
    pylab.setp(pylab.gca(),'ylim',[0,.01])
    pylab.show()

     kalman_demo

  • 相关阅读:
    (78) C# System.Text.Json
    EF 迁移数据库
    element table
    element-plus 安装
    asp.net core 跨域
    JS常用公共方法 获取弹出层合适的宽高
    一篇文章让你搞懂如何通过Nginx来解决跨域问题
    Dubbo系列讲解之服务注册【3万字长文分享】
    Dubbo系列讲解之扩展点实现原理分析【2万字分享】
    MySQL索引篇之索引存储模型
  • 原文地址:https://www.cnblogs.com/zjuhjm/p/2838472.html
Copyright © 2020-2023  润新知