• POJ3133(插头dp)


    Manhattan Wiring
    Time Limit: 5000MS   Memory Limit: 65536K
         

    Description

    There is a rectangular area containing n × m cells. Two cells are marked with “2”, and another two with “3”. Some cells are occupied by obstacles. You should connect the two “2”s and also the two “3”s with non-intersecting lines. Lines can run only vertically or horizontally connecting centers of cells without obstacles.

    Lines cannot run on a cell with an obstacle. Only one line can run on a cell at most once. Hence, a line cannot intersect with the other line, nor with itself. Under these constraints, the total length of the two lines should be minimized. The length of a line is defined as the number of cell borders it passes. In particular, a line connecting cells sharing their border has length 1.

    Fig. 1(a) shows an example setting. Fig. 1(b) shows two lines satisfying the constraints above with minimum total length 18.

    Figure 1: An example of setting and its solution

    Input

    The input consists of multiple datasets, each in the following format.

    n m
    row1
    rown

    n is the number of rows which satisfies 2 ≤ n ≤ 9. m is the number of columns which satisfies 2 ≤ m ≤ 9. Each rowi is a sequence of m digits separated by a space. The digits mean the following.

    0: Empty

    1: Occupied by an obstacle

    2: Marked with “2”

    3: Marked with “3”

    The end of the input is indicated with a line containing two zeros separated by a space.

    Output

    For each dataset, one line containing the minimum total length of the two lines should be output. If there is no pair of lines satisfying the requirement, answer “0” instead. No other characters should be contained in the output.

    Sample Input

    5 5
    0 0 0 0 0
    0 0 0 3 0
    2 0 2 0 0
    1 0 1 1 1
    0 0 0 0 3
    2 3
    2 2 0
    0 3 3
    6 5
    2 0 0 0 0
    0 3 0 0 0
    0 0 0 0 0
    1 1 1 0 0
    0 0 0 0 0
    0 0 2 3 0
    5 9
    0 0 0 0 0 0 0 0 0
    0 0 0 0 3 0 0 0 0
    0 2 0 0 0 0 0 2 0
    0 0 0 0 3 0 0 0 0
    0 0 0 0 0 0 0 0 0
    9 9
    3 0 0 0 0 0 0 0 2
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    2 0 0 0 0 0 0 0 3
    9 9
    0 0 0 1 0 0 0 0 0
    0 2 0 1 0 0 0 0 3
    0 0 0 1 0 0 0 0 2
    0 0 0 1 0 0 0 0 3
    0 0 0 1 1 1 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    9 9
    0 0 0 0 0 0 0 0 0
    0 3 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 2 3 2
    0 0

    Sample Output

    18
    2
    17
    12
    0
    52
    43

    Source

     
    花了两天时间 把代码风格变成正规插头dp了。
    代码是orz别人的:
    #include<set>
    #include<queue>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    const int STATE = 59049+1000; 
    const int Mod = 10007;
    #define For(i,n) for(int i=1;i<=n;i++)
    #define Rep(i,l,r) for(int i=l;i<=r;i++)
    #define Down(i,r,l) for(int i=r;i>=l;i--)
    
    struct statedp{
        int head[Mod],next[STATE],f[STATE],state[STATE];
        int size;
        void clear(){memset(head,-1,sizeof(head));size = 0;}
        void push(int st,int ans){
            int Key = st % Mod;
            for(int p = head[Key];p!=-1;p=next[p])
                if(st==state[p]){
                    f[p] = min(f[p],ans);
                    return;
                }
            state[size] = st;f[size] = ans;next[size] = head[Key];
            head[Key] = size++;
        }
    }dp[2];
    
    int n,m,maze[12][12],code[12];
    
    void init(){
        For(i,n)
          For(j,m)
            scanf("%d",&maze[i][j]);
    }
    
    void dpblock(int i,int j,int cur){
        int Lim = (j==m) ? (2) : (0);
        Rep(i,0,dp[cur].size-1)
          dp[cur^1].push(dp[cur].state[i] >> Lim , dp[cur].f[i]);
    }
    
    void shift(){
        Down(i,m,1) code[i] = code[i-1];code[0] = 0;
    }
    
    int encode(){
        int ret = 0;
        Rep(i,0,m) ret = ret << 2 | code[i];
        return ret;
    }
    
    void decode(int st){
        Down(i,m,0) code[i] = st & 3 , st >>= 2;
    }
    
    void dpblank(int i,int j,int cur){
        Rep(k,0,dp[cur].size-1){
            decode(dp[cur].state[k]);
            int Left = code[j-1] , Up = code[j];
            if(maze[i][j]>=2){
                if(Left&&Up) continue;
                int CODE = (maze[i][j]==2)?(1):2;
                if(Left||Up){
                    if(Left+Up!=CODE) continue;
                    code[j-1] = code[j] = 0;
                    if(j==m) shift();
                    dp[cur^1].push(encode(),dp[cur].f[k]);
                }else{
                    if(i<n && maze[i+1][j] != 1){
                        code[j-1] = CODE; code[j] = 0;
                        if(j==m) shift();
                        dp[cur^1].push(encode(),dp[cur].f[k]);
                    }
                    if(j<m && maze[i][j+1] != 1){
                        code[j-1] = 0; code[j] = CODE;
                        dp[cur^1].push(encode(),dp[cur].f[k]);
                    }
                }        
                continue;
            }
            if(Left && Up){
                if(Left!=Up) continue;
                code[j-1] = code[j] = 0;
                if(j==m) shift();
                dp[cur^1].push(encode(),dp[cur].f[k]+1);
            }
            else if(Left || Up){
                int CODE = Left | Up;
                if(i<n && maze[i+1][j]!=1){
                    code[j-1] = CODE; code[j] = 0;
                    if(j==m) shift();
                    dp[cur^1].push(encode(),dp[cur].f[k]+1);
                }
                if(j<m && maze[i][j+1]!=1){
                    code[j-1] = 0; code[j] = CODE;
                    dp[cur^1].push(encode(),dp[cur].f[k]+1);
                }
            }else{
                if(!maze[i][j]){
                    if(j==m) shift();
                    dp[cur^1].push(encode(),dp[cur].f[k]);
                }
                if(i<n && j<m && maze[i+1][j]!=1 && maze[i][j+1]!=1){
                    code[j-1] = code[j] = 1;
                    dp[cur^1].push(encode(),dp[cur].f[k]+1);
                    code[j-1] = code[j] = 2;
                    dp[cur^1].push(encode(),dp[cur].f[k]+1);
                } 
            }
        }
    }
    
    void DP(){
        int cur = 0;dp[0].clear();dp[0].push(0,0);
        For(i,n)
          For(j,m){
              dp[cur^1].clear();
              if(maze[i][j]==1) dpblock(i,j,cur);
              else              dpblank(i,j,cur);
              cur^=1;
          }
        int ans = 2147483647;
        Rep(i,0,dp[cur].size-1) ans = min(ans,dp[cur].f[i]);
        if(ans==2147483647) ans = -2;
        printf("%d
    ",ans+2);
    }
    
    int main(){
        while(scanf("%d%d",&n,&m),m+n){
            init();
            DP();
        }
        return 0;
    }
  • 相关阅读:
    如何调试 VB 6 的安装源程序 Setup1.VBP?
    Linq和泛型,IEnumerable和IQueryable之间的区别,Lambda表达式,Linq to Sql停止开发转为 Entity Framework
    SQL Server中行列转换 Pivot UnPivot
    一个题目涉及到的50个Sql语句
    Entity Framework中IQueryable, IEnumerable, IList的差别
    [转]git使用指南系列
    一条SQL语句查询出成绩名次 排名 (转)
    MS SQL Server:排名函数详解
    MSSQL中删除所有外键约束的方法
    Model View Presenter Part I – Building it from Scratch
  • 原文地址:https://www.cnblogs.com/zjdx1998/p/3915598.html
Copyright © 2020-2023  润新知