• Black Box(POJ 1442·TREAP实现)


    传送门:http://poj.org/problem?id=1442

    Black Box
    Time Limit: 1000MS   Memory Limit: 10000K
         

    Description

    Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:

    ADD (x): put element x into Black Box;
    GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending.

    Let us examine a possible sequence of 11 transactions:

    Example 1

    N Transaction i Black Box contents after transaction Answer
    (elements are arranged by non-descending)
    1 ADD(3) 0 3
    2 GET 1 3 3
    3 ADD(1) 1 1, 3
    4 GET 2 1, 3 3
    5 ADD(-4) 2 -4, 1, 3
    6 ADD(2) 2 -4, 1, 2, 3
    7 ADD(8) 2 -4, 1, 2, 3, 8
    8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8
    9 GET 3 -1000, -4, 1, 2, 3, 8 1
    10 GET 4 -1000, -4, 1, 2, 3, 8 2
    11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8

    It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.


    Let us describe the sequence of transactions by two integer arrays:


    1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).

    2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).

    The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.

    Input

    Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.

    Output

    Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

    Sample Input

    7 4
    3 1 -4 2 8 -1000 2
    1 2 6 6

    Sample Output

    3
    3
    1
    2

    Source

     
     
    第二棵treap。。总体感觉treap非常好写,我学treap是为了防止有的题卡splay。。感觉应该差不多了QAQ...
    这题没什么做法。。
    Codes:
     1 #include<set>
     2 #include<ctime>
     3 #include<queue>
     4 #include<cstdio>
     5 #include<cstdlib>
     6 #include<cstring>
     7 #include<iostream>
     8 #include<algorithm>
     9 using namespace std;
    10 const int N = 100100;
    11 #define L(i) (T[i].s[0])
    12 #define R(i) (T[i].s[1])
    13 #define For(i,n) for(int i=1;i<=n;i++)
    14 #define Rep(i,l,r) for(int i=l;i<=r;i++)
    15 
    16 struct treap{
    17     int size,s[2],v,pri;
    18     void Sets(int x,int y){
    19         size = 1;v = x;pri = y;
    20     }
    21 }T[N];
    22 
    23 int n,m,A[N],size,Lim,now,level = 0;
    24 int tot,root;
    25 int read(){
    26     char ch = getchar(); int num = 0 , q = 1;
    27     while(ch>'9'||ch<'0'){
    28         if(ch=='-') q = -1;
    29         ch = getchar();
    30     }
    31     while(ch>='0'&&ch<='9'){
    32         num = num * 10 + ch - '0';
    33         ch = getchar();
    34     }
    35     return num * q;
    36 }
    37 
    38 void Update(int i){
    39     T[i].size = T[L(i)].size + T[R(i)].size + 1;
    40 }
    41 
    42 void Rot(int &y,int f){
    43     int x = T[y].s[!f];
    44     T[y].s[!f] = T[x].s[f];
    45     T[x].s[f]  = y;
    46     Update(y);Update(x);
    47     y = x;
    48 }
    49 
    50 void Insert(int &i,int val){
    51     if(!i){
    52         T[i=++tot].Sets(val,rand());
    53         return;
    54     }
    55     int f = T[i].v > val;
    56     Insert(T[i].s[!f],val);
    57     if(T[T[i].s[!f]].pri > T[i].pri) Rot(i,f);
    58     else                             Update(i);
    59 }
    60 
    61 int Rank(int i,int kth){
    62     if(T[L(i)].size + 1 == kth) return i;
    63     else if(T[L(i)].size >=kth) return Rank(L(i),kth);
    64     else return Rank(R(i),kth - T[L(i)].size - 1);
    65 }
    66 
    67 int main(){
    68     srand(time(NULL));
    69     n = read(); m = read();
    70     For(i,n) A[i] = read();
    71     For(i,m) {
    72         Lim = read();
    73         Rep(i,now+1,Lim) Insert(root,A[i]); now = Lim;
    74         level++;printf("%d
    ",T[Rank(root,level)].v);
    75     }
    76     return 0;
    77 }
  • 相关阅读:
    HihoCoder 1638 : 小Hi的天平 (2-sat+并查集)
    阿里云安全肖力:云上数据安全体系建设的六要素
    MaxCompute客户端(odpscmd)在windows命令行下查询中文乱码问题处理实践
    序列化方案选型对比
    亚洲唯一,阿里云SLB位列Gartner全球网络负载均衡市场前五
    阿里云OSS同城冗余存储技术解析
    OSS跨同城3AZ重磅发布,构造全面数据保护体系
    阿里云OSS同城冗余存储正式商业化,提供云上同城容灾能力
    云原生应用 Kubernetes 监控与弹性实践
    GIAC2019 演讲精选 | 面向未来的黑科技——UI2CODE闲鱼基于图片生成跨端代码
  • 原文地址:https://www.cnblogs.com/zjdx1998/p/3885542.html
Copyright © 2020-2023  润新知