现在shell里面
scrapy startproject tutorial
然后
cd tutorial
scrapy genspider quotes quotes.toscrape.com
观察原始页面发现数据存储在3个内容里面
text
author
tags
然后修改Items.py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class QuoteItem(scrapy.Item):
text= scrapy.Field()
author=scrapy.Field()
tags= scrapy.Field()
修改quotes.py为
# -*- coding: utf-8 -*- import scrapy from tutorial.items import QuoteItem class QuotesSpider(scrapy.Spider): name = 'quotes' allowed_domains = ['quotes.toscrape.com'] start_urls = ['http://quotes.toscrape.com/'] def parse(self, response): quotes = response.css('.quote') for quote in quotes: item=QuoteItem() item['text'] = quote.css('.text::text').extract_first() item['author'] = quote.css('.author::text').extract_first() item['tags'] = quote.css('.tags .tga::text').extract() yield item next=response.css('.pager .next a::attr(href)').extract_first() url = response.urljoin(next) yield scrapy.Request(url=url,callback=self.parse)
然后在shell里面cd到spiders目录下
scrapy crawl quotes -o quotes.csv
运行并输出到csv
如果要进行更复杂的操作,如将结果保存到MongoDb数据库,或者筛选某些有用的数据,将会用到pipelines.py
Item Pipeline 为项目管道,到Item生成后,自动传送到pipelines 进行处理。
常用pipelines做以下操作:
1,清理html数据
2.验证爬取数据,检查爬取字段。
3,查重并丢弃重复内容
4,将爬取结果保存到数据库