• Interesting Integers Gym


    Undoubtedly you know of the Fibonacci numbers. Starting with F1 = 1 and F2 = 1, every next number is the sum of the two previous ones. This results in the sequence 1, 1, 2, 3, 5, 8, 13, . . ..

     Now let us consider more generally sequences that obey the same recursion relation

    Gi = Gi−1 + Gi−2               for i > 2

    but start with two numbers G1 ≤ G2 of our own choice. We shall call these Gabonacci sequences. For example, if one uses G1 = 1 and G2 = 3, one gets what are known as the Lucas numbers: 1, 3, 4, 7, 11, 18, 29, . . .. These numbers are – apart from 1 and 3 – different from the Fibonacci numbers.

     By choosing the first two numbers appropriately, you can get any number you like to appear in the Gabonacci sequence. For example, the number n appears in the sequence that starts with 1 and n − 1, but that is a bit lame. It would be more fun to start with numbers that are as small as possible, would you not agree?

    Input

    On the first line one positive number: the number of test cases, at most 100. After that per test case:

     • one line with a single integer n (2 ≤ n ≤ 109 ): the number to appear in the sequence.

    Output

    Per test case:

     • one line with two integers a and b (0 < a ≤ b), such that, for G1 = a and G2 = b, Gk = n for some k. These numbers should be the smallest possible, i.e., there should be no numbers a 0 and b 0 with the same property, for which b 0 < b, or for which b 0 = b and a 0 < a.

    Sample in- and output

    Input

    5

    89

    123

    1000

    1573655

    842831057

    Output

    1 1

    1 3

    2 10

    985 1971

    2 7

    这道题赛后看大佬们用的都是扩展欧几里得,懵。。。

    我写的介个算法,坑点比较多,数据上细节比较多,稍不留神就容易错

    奇葩思路A的,代码:

     1 #include <stdio.h>
     2 #include <string.h>
     3 
     4 long long INF = 1e9+5;
     5 
     6 //有数据用到了long long,就干脆把所有整数都开成longlong了,丢...
     7 int main()
     8 {
     9     long long t, x, a, b, re1, re2;
    10     long long data1, data2, t1, t2;
    11     long long aa[55], i, j;
    12     aa[1] = 1;
    13     aa[2] = 1;
    14     for(i=3; i<50; i++)
    15     {
    16         aa[i] = aa[i-1] + aa[i-2];
    17     }
    18     scanf("%lld", &t);
    19 
    20     while(t--)
    21     {
    22         scanf("%lld", &x);
    23         for(i=48; i>=0; i--)
    24         {
    25             if(aa[i]+aa[i+1]<=x)   //这句剪枝不能没有,没有会T,
    26                  //想一下,这样就可以减少好多没有意义的80000次循环,何乐而不为?
    27             {
    28                 for(j=1; j<=80000; j++)  //在不T的条件下尽量扩大范围
    29                 {
    30                     if((x-aa[i+1]*j)%aa[i]==0&&(x-aa[i+1]*j)/aa[i]>0&&(x-aa[i+1]*j)/aa[i]<=j) break;
    31                 }
    32                 if(j<=80000) break;
    33             }
    34         }
    35         printf("%lld %lld
    ", (x-aa[i+1]*j)/aa[i], j);
    36     }
    37     return 0;
    38 }
  • 相关阅读:
    游戏引擎架构
    前瞻设计:创新型战略推动可持续变革(全彩)
    解放创意——自由人的自由联合
    python2中的__init__.py文件的作用
    python导入模块时的执行顺序
    json使用
    JQuery基本语法(部分)
    谷歌开发者工具使用
    pythonseleniumAPI
    静态、自适应、流式、响应式四种网页布局的区别
  • 原文地址:https://www.cnblogs.com/0xiaoyu/p/11435579.html
Copyright © 2020-2023  润新知