• tensorboard使用


    import tensorflow as tf
    import numpy as np
    
    ## prepare the original data
    with tf.name_scope('data'):
         x_data = np.random.rand(100).astype(np.float32)
         y_data = 0.3*x_data+0.1
    ##creat parameters
    with tf.name_scope('parameters'):
         with tf.name_scope('weights'):
             weight = tf.Variable(tf.random_uniform([1],-1.0,1.0))
             tf.summary.histogram('weight',weight)
         with tf.name_scope('biases'):
             bias = tf.Variable(tf.zeros([1]))
             tf.summary.histogram('bias',bias)
    ##get y_prediction
    with tf.name_scope('y_prediction'):
         y_prediction = weight*x_data+bias
    ##compute the loss
    with tf.name_scope('loss'):
         loss = tf.reduce_mean(tf.square(y_data-y_prediction))
         tf.summary.scalar('loss',loss)
    ##creat optimizer
    optimizer = tf.train.GradientDescentOptimizer(0.5)
    #creat train ,minimize the loss
    with tf.name_scope('train'):
         train = optimizer.minimize(loss)
    #creat init
    with tf.name_scope('init'):
         init = tf.global_variables_initializer()
    ##creat a Session
    sess = tf.Session()
    #merged
    merged = tf.summary.merge_all()
    ##initialize
    writer = tf.summary.FileWriter("logs/", sess.graph)
    sess.run(init)
    ## Loop
    for step  in  range(101):
        sess.run(train)
        rs=sess.run(merged)
        writer.add_summary(rs, step)

    仅用作记录

    localhost:6006

  • 相关阅读:
    移动端适配方案
    js基础知识复习
    js单线程的本质-------Event Loop
    第13课 字典
    第12课 习题讲解
    第11课 循环嵌套和算法
    第10课 文件的读写
    第9课 循环语句与注释
    第8课 对象的方法
    第7课 初识函数
  • 原文地址:https://www.cnblogs.com/ziytong/p/11225115.html
Copyright © 2020-2023  润新知