import tensorflow as tf import numpy as np ## prepare the original data with tf.name_scope('data'): x_data = np.random.rand(100).astype(np.float32) y_data = 0.3*x_data+0.1 ##creat parameters with tf.name_scope('parameters'): with tf.name_scope('weights'): weight = tf.Variable(tf.random_uniform([1],-1.0,1.0)) tf.summary.histogram('weight',weight) with tf.name_scope('biases'): bias = tf.Variable(tf.zeros([1])) tf.summary.histogram('bias',bias) ##get y_prediction with tf.name_scope('y_prediction'): y_prediction = weight*x_data+bias ##compute the loss with tf.name_scope('loss'): loss = tf.reduce_mean(tf.square(y_data-y_prediction)) tf.summary.scalar('loss',loss) ##creat optimizer optimizer = tf.train.GradientDescentOptimizer(0.5) #creat train ,minimize the loss with tf.name_scope('train'): train = optimizer.minimize(loss) #creat init with tf.name_scope('init'): init = tf.global_variables_initializer() ##creat a Session sess = tf.Session() #merged merged = tf.summary.merge_all() ##initialize writer = tf.summary.FileWriter("logs/", sess.graph) sess.run(init) ## Loop for step in range(101): sess.run(train) rs=sess.run(merged) writer.add_summary(rs, step)
仅用作记录
localhost:6006