• Python(迭代、三元表达式、列表生成、生成器、迭代器)


    迭代


     

     什么是迭代
        1 重复
        2 下次重复一定是基于上一次的结果而来

    如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。

    在Python中,迭代是通过for ... in来完成的,而很多语言比如C或者Java,迭代list是通过下标完成的,比如Java代码:

    for (i=0; i<list.length; i++) {
        n = list[i];
    }
    

    可以看出,Python的for循环抽象程度要高于Java的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。

    list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

    >>> d = {'a': 1, 'b': 2, 'c': 3}
    >>> for key in d:
    ...     print(key)
    ...
    a
    c
    b
    

    因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

    默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()

    由于字符串也是可迭代对象,因此,也可以作用于for循环:

    >>> for ch in 'ABC':
    ...     print(ch)
    ...
    A
    B
    C
    

    所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。

    那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

    >>> from collections import Iterable
    >>> isinstance('abc', Iterable) # str是否可迭代
    True
    >>> isinstance([1,2,3], Iterable) # list是否可迭代
    True
    >>> isinstance(123, Iterable) # 整数是否可迭代
    False
    

    最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

    >>> for i, value in enumerate(['A', 'B', 'C']):
    ...     print(i, value)
    ...
    0 A
    1 B
    2 C
    

    上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:

    >>> for x, y in [(1, 1), (2, 4), (3, 9)]:
    ...     print(x, y)
    ...
    1 1
    2 4
    3 9
    

    小结

    任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环。

    列表生成式


    三元表达式

     

    res=x if x>y else y

    只针对最简单的,没有其他分支

     

     

    列表解析

     

    l=[i.upper for I in s ]

    将s中的元素全部大写,并形成列表

    l=[i for I in s if i>50]

    将s中的大于50的元素形成列表

     

     

    生成器表达式

    语法和列表解析一样,只是得到的是一个生成器

    g=(i for i in range(1000000000000000000000000000000000000))
    
    print(g)
    print(g.__next__())       #g.__next__等于next(g)
    g=(float(line.split()[1]) * int(line.split()[2]) for line in open('goods',encoding='utf-8'))
    print(sum(g))
    '''
    居然能直接打开,g是一个生成器
    '''
    goods_info=[]
    
    with open('goods',encoding='utf-8') as f:
        goods_info=[{'name':line.split()[0],'price':float(line.split()[1]),'count':int(line.split()[2])} for line in f if float(line.split()[1]) > 3000]
    
    print(goods_info)
    
    '''
    生成一个含有字典的列表
    '''
    '''
    列表解析补充
    '''
    with open(r'D:pyemptyc.txt','r',encoding='utf-8') as f:
        print(sum([float(i.split()[1])*int(i.split()[2]) for i in f]))
        f.seek(0)       #光标初始化
        print([item for line in f for item in line.split() if item.isdigit()])
        f.seek(0)       #光标初始化
        g=(float(i.split()[1])*int(i.split()[2]) for i in f)
        print(sum(g))
    
    with open(r'D:pyemptyc.txt','r',encoding='utf-8') as f:
        goods=[{'name':line.split()[0] ,'price':float(line.split()[1]) ,'count':int(line.split()[2]) } for line in f ]
        print(goods)
    '''
    要想一次取多个值,只能像line.split()这样直接分,多个for循环可以取出深层元素,但是是一个一个取
    '''

    列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。

    举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11))

    >>> list(range(1, 11))
    [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    

    但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:

    >>> L = []
    >>> for x in range(1, 11):
    ...    L.append(x * x)
    ...
    >>> L
    [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
    

    但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:

    >>> [x * x for x in range(1, 11)]
    [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
    

    写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。

    for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:

    >>> [x * x for x in range(1, 11) if x % 2 == 0]
    [4, 16, 36, 64, 100]
    

    还可以使用两层循环,可以生成全排列:

    >>> [m + n for m in 'ABC' for n in 'XYZ']
    ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
    

    三层和三层以上的循环就很少用到了。

    运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:

    >>> import os # 导入os模块,模块的概念后面讲到
    >>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录
    ['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']
    

    for循环其实可以同时使用两个甚至多个变量,比如dictitems()可以同时迭代key和value:

    >>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
    >>> for k, v in d.items():
    ...     print(k, '=', v)
    ...
    y = B
    x = A
    z = C
    

    因此,列表生成式也可以使用两个变量来生成list:

    >>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
    >>> [k + '=' + v for k, v in d.items()]
    ['y=B', 'x=A', 'z=C']
    

    最后把一个list中所有的字符串变成小写:

    >>> L = ['Hello', 'World', 'IBM', 'Apple']
    >>> [s.lower() for s in L]
    ['hello', 'world', 'ibm', 'apple']
    

    练习

    如果list中既包含字符串,又包含整数,由于非字符串类型没有lower()方法,所以列表生成式会报错:

    >>> L = ['Hello', 'World', 18, 'Apple', None]
    >>> [s.lower() for s in L]
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "<stdin>", line 1, in <listcomp>
    AttributeError: 'int' object has no attribute 'lower'
    

    使用内建的isinstance函数可以判断一个变量是不是字符串:

    >>> x = 'abc'
    >>> y = 123
    >>> isinstance(x, str)
    True
    >>> isinstance(y, str)
    False



    生成器


    生成器函数

    函数体内包含有yield关键字,该函数执行的结果就是生成器

    生成器就是迭代器

     
           

    yield

    功能1:
    相当于return,结束函数执行,能够返回值,和return一样能够返回多个值,逗号分开

    return只能返回一次值
    一支程序,yield可以存在多个

    yield必须有返回值,没有的话会StopIteration

    功能2:
    遵循迭代器的取值方式obj.__next__,yield只是暂停函数,下次obj.__next__,会接着执行函数

       

    功能3:
    yield为函数封装了__iter__和__next__方法,把函数执行结果做成了迭代器

       
           

    for i in [生成器]

    i是yield的返回值,每次循环碰到yield停止

       
    def init(func):                   #send必须传值到yield,所以需要先将生成器暂停到一个yield,相当于每次send之前先要初始化一次。如果send的时候不是yield暂停,会报错
        def wrapper(*args,**kwargs):
            g=func(*args,**kwargs)
            next(g)
            return g
        return wrapper
    
    @init
    def eater(name):
        print('%s ready to eat' %name)
        food_list=[]
        while True:
            food=yield food_list              #send传入的值给了yield,赋值给了food,但是执行结束的时候,返回值是food_list,和yield本身传入的值没有关系。
            food_list.append(food)
            print('%s start to eat %s' %(name,food))
    
    #=====执行一=======================
    # e=eater('alex')
    # print(e.send('狗屎'))                       #e.send() 有两个功能,开始阶段传值给yield,像next一样执行下一次生成器
    # print(e.send('猫屎'))                       #下次如果不传值了,x又是none,因为每次x都会被赋值为yield,而不传值,yield就是none
    # print(e.send('alex屎'))
    #======执行二=======================
    def make_shit(people,n):
        for i in range(n):
            people.send('shit%s' %i)
    
    e=eater('alex')
    make_shit(e,5)

    通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

    所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

    要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

    >>> L = [x * x for x in range(10)]
    >>> L
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    >>> g = (x * x for x in range(10))
    >>> g
    <generator object <genexpr> at 0x1022ef630>
    

    创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

    我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

    如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

    >>> next(g)
    0
    >>> next(g)
    1
    >>> next(g)
    4
    >>> next(g)
    9
    >>> next(g)
    16
    >>> next(g)
    25
    >>> next(g)
    36
    >>> next(g)
    49
    >>> next(g)
    64
    >>> next(g)
    81
    >>> next(g)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    StopIteration
    

    我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

    当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

    >>> g = (x * x for x in range(10))
    >>> for n in g:
    ...     print(n)
    ... 
    0
    1
    4
    9
    16
    25
    36
    49
    64
    81
    

    所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

    generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

    比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

    1, 1, 2, 3, 5, 8, 13, 21, 34, ...

    斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

    def fib(max):
        n, a, b = 0, 0, 1
        while n < max:
            print(b)
            a, b = b, a + b
            n = n + 1
        return 'done'
    

    注意,赋值语句:

    a, b = b, a + b
    

    相当于:

    t = (b, a + b) # t是一个tuple
    a = t[0]
    b = t[1]
    

    但不必显式写出临时变量t就可以赋值。

    上面的函数可以输出斐波那契数列的前N个数:

    >>> fib(6)
    1
    1
    2
    3
    5
    8
    'done'
    

    仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

    也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

    def fib(max):
        n, a, b = 0, 0, 1
        while n < max:
            yield b
            a, b = b, a + b
            n = n + 1
        return 'done'
    

    这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

    >>> f = fib(6)
    >>> f
    <generator object fib at 0x104feaaa0>
    

    这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

    举个简单的例子,定义一个generator,依次返回数字1,3,5:

    def odd():
        print('step 1')
        yield 1
        print('step 2')
        yield(3)
        print('step 3')
        yield(5)
    

    调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

    >>> o = odd()
    >>> next(o)
    step 1
    1
    >>> next(o)
    step 2
    3
    >>> next(o)
    step 3
    5
    >>> next(o)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    StopIteration
    

    可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

    回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

    同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

    >>> for n in fib(6):
    ...     print(n)
    ...
    1
    1
    2
    3
    5
    8
    

    但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

    >>> g = fib(6)
    >>> while True:
    ...     try:
    ...         x = next(g)
    ...         print('g:', x)
    ...     except StopIteration as e:
    ...         print('Generator return value:', e.value)
    ...         break
    ...
    g: 1
    g: 1
    g: 2
    g: 3
    g: 5
    g: 8
    Generator return value: done
    

    关于如何捕获错误,后面的错误处理还会详细讲解。

    练习

    杨辉三角定义如下:

              1
            1   1
          1   2   1
        1   3   3   1
      1   4   6   4   1
    1   5   10  10  5   1

    小结

    generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。

    要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。

    请注意区分普通函数和generator函数,普通函数调用直接返回结果:

    >>> r = abs(6)
    >>> r
    6
    

    generator函数的“调用”实际返回一个generator对象:

    >>> g = fib(6)
    >>> g
    <generator object fib at 0x1022ef948>
     

    迭代器


    什么是迭代器协议

    1.迭代器协议是指:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代 (只能往后走不能往前退)

    2.可迭代对象:实现了迭代器协议的对象(如何实现:对象内部定义一个__iter__()方法)

    3.协议是一种约定,可迭代对象实现了迭代器协议,python的内部工具(如for循环,sum,min,max函数等)使用迭代器协议访问对象。

    obj.__iter__() 得到的结果就是迭代器
    得到的迭代器,既有__iter__方法,也有__next__方法
    迭代器__iter__一下,和原来完全一样 yield为函数封装了__iter__和__next__方法,把函数执行结果做成了迭代器
    for循环其实就是调用了迭代器__iter__方法

    优点:
    1、不依赖于索引的取值方式
    2、惰性计算,节省内存。比如取文件内容

    缺点:
    1、取值繁琐,不如按照索引取值方便
    2、一次性,之后向后取值,不能回头
    3、不知道长度

    l=[1,2,3,4,5,6]                    #自动捕捉 stopiteration 异常
    it=l.__iter__()                     #手动实现for循环
    
    while True:
        try:
            print(it.__next__())
        except StopIteration:       #这句和下句出过错,根本没写对
            break
    
    print(it.__next__)

    我们已经知道,可以直接作用于for循环的数据类型有以下几种:

    一类是集合数据类型,如listtupledictsetstr等;

    一类是generator,包括生成器和带yield的generator function。

    这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

    可以使用isinstance()判断一个对象是否是Iterable对象:

    >>> from collections import Iterable
    >>> isinstance([], Iterable)
    True
    >>> isinstance({}, Iterable)
    True
    >>> isinstance('abc', Iterable)
    True
    >>> isinstance((x for x in range(10)), Iterable)
    True
    >>> isinstance(100, Iterable)
    False
    

    而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

    可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

    可以使用isinstance()判断一个对象是否是Iterator对象:

    >>> from collections import Iterator
    >>> isinstance((x for x in range(10)), Iterator)
    True
    >>> isinstance([], Iterator)
    False
    >>> isinstance({}, Iterator)
    False
    >>> isinstance('abc', Iterator)
    False
    

    生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

    listdictstrIterable变成Iterator可以使用iter()函数:

    >>> isinstance(iter([]), Iterator)
    True
    >>> isinstance(iter('abc'), Iterator)
    True
    

    你可能会问,为什么listdictstr等数据类型不是Iterator

    这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

    Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

    小结

    凡是可作用于for循环的对象都是Iterable类型;

    凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

    集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

    Python的for循环本质上就是通过不断调用next()函数实现的,例如:

    for x in [1, 2, 3, 4, 5]:
        pass
    

    实际上完全等价于:

    # 首先获得Iterator对象:
    it = iter([1, 2, 3, 4, 5])
    # 循环:
    while True:
        try:
            # 获得下一个值:
            x = next(it)
        except StopIteration:
            # 遇到StopIteration就退出循环
            break


  • 相关阅读:
    平凡的函数(素数筛)
    Windows下搭载虚拟机以及环境安装
    2020.8.22-2020.8.31小假期自主提升计划(联赛知识点总结)
    MySQL入门详解(三)---mysql如何进行主从配置
    MySQL入门详解(二)---mysql事务、锁、以及优化
    Python中操作HTTP请求的urllib模块详解
    给自己列一份清单,可以提升自己的书目
    Javascript中的bind详解
    Python手写模拟单向链表对象,栈对象和树
    从敲入 URL 到浏览器渲染完成、对HTTP协议的理解
  • 原文地址:https://www.cnblogs.com/zihe/p/7017631.html
Copyright © 2020-2023  润新知