pytorch coco 目标检测 DataLoader实现
pytorch实现目标检测目标检测算法首先要实现数据的读入,即实现Dataset
和DataLoader
两个类。
借助pycocotools
实现了CoCo2017用于目标检测数据的读取,并使用cv2
显示。
分析
使用cv2
显示读入数据,或者要送入到网络的数据应该有三个部分
- 图像,Nx3xHeight x Width
- BBs,NxMx4
- 类型,NxMx1
因此,可以将BBs和类型组成一个。Pytorch默认的数据类型是batchsize x nChanns x H x W。
在目标检测中,一般将图像进行缩放,使其尺寸满足一定要求,具体可以参考之前的博客。也就是要实现一个Resizer()
的类进行变换。此外,通常要对图像进行标准化处理,以及水平翻转等变换。因此,在实现Dataset时要实现的变换有三个: Resizer()
、Normilizer()
和Augmenter()
。
Python中图像数据读入一般都是 nChanns x H x W的numpy数组。常规的做法是使用Dataset
中的transform
对数据进行转换,输出torch类型的数组。
由于CoCo数据集中图像的尺寸不一致,不能直接获得Nx3xHeight x Width类型的数组,因此要重写DataLoader
中的collate_fn
,将一个minibatch中的图像尺寸调整一致。如果想要按照图像被缩放比例进行采样,就要重写DataLoader
中的batch_sampler
,
batch_sampler
与DataLoader
中的batch_size, shuffle, sampler, and drop_last
参数是不兼容的,即在DataLoader
中使用了batch_sampler
,参数就不能再设置batch_size, shuffle, sampler, and drop_last
参数。
从coco数据中读入图像、BBs以及类型
coco.getImgIds()
返回了图像索引数组,可以分别结合coco.loadImgs()
和coco.getAnnIds()
分别获得图像、BBs和类型的具体信息。
要注意的事情有:
- python中图像的读入的通常是numpy的uint8数组,需要转换成float类型,并除以255以使最大值为1.0;
- coco数据中有80个类型,但是给的标签值最大为90,说明并不连续,需要设置新的标签,新的标签要从0到79,一定从0开始。
- coco数据集中有些图片的BBs标签高宽小于1,标注的问题,要注意舍去。
下面就是一个简单的SimpleCoCoDataset
类
class SimpleCoCoDataset(Dataset):
def __init__(self, rootdir, set_name='val2017', transform=None):
self.rootdir, self.set_name = rootdir, set_name
self.transform = transform
self.coco = COCO(os.path.join(self.rootdir, 'annotations', 'instances_'
+ self.set_name + '.json'))
self.image_ids = self.coco.getImgIds()
self.load_classes()
def load_classes(self):
categories = self.coco.loadCats(self.coco.getCatIds())
categories.sort(key=lambda x: x['id'])
# coco ids is not from 1, and not continue
# make a new index from 0 to 79, continuely
# classes: {names: new_index}
# coco_labels: {new_index: coco_index}
# coco_labels_inverse: {coco_index: new_index}
self.classes, self.coco_labels, self.coco_labels_inverse = {}, {}, {}
for c in categories:
self.coco_labels[len(self.classes)] = c['id']
self.coco_labels_inverse[c['id']] = len(self.classes)
self.classes[c['name']] = len(self.classes)
# labels: {new_index: names}
self.labels = {}
for k, v in self.classes.items():
self.labels[v] = k
def __len__(self):
return len(self.image_ids)
def __getitem__(self, index):
img = self.load_image(index)
ann = self.load_anns(index)
sample = {'img':img, 'ann': ann}
if self.transform:
sample = self.transform(sample)
return sample
def load_image(self, index):
image_info = self.coco.loadImgs(self.image_ids[index])[0]
imgpath = os.path.join(self.rootdir, 'images', self.set_name,
image_info['file_name'])
img = skimage.io.imread(imgpath)
return img.astype(np.float32) / 255.0
def load_anns(self, index):
annotation_ids = self.coco.getAnnIds(self.image_ids[index], iscrowd=False)
# anns is num_anns x 5, (x1, x2, y1, y2, new_idx)
anns = np.zeros((0, 5))
# skip the image without annoations
if len(annotation_ids) == 0:
return anns
coco_anns = self.coco.loadAnns(annotation_ids)
for a in coco_anns:
# skip the annotations with width or height < 1
if a['bbox'][2] < 1 or a['bbox'][3] < 1:
continue
ann = np.zeros((1, 5))
ann[0, :4] = a['bbox']
ann[0, 4] = self.coco_labels_inverse[a['category_id']]
anns = np.append(anns, ann, axis=0)
# (x1, y1, width, height) --> (x1, y1, x2, y2)
anns[:, 2] += anns[:, 0]
anns[:, 3] += anns[:, 1]
return anns
def image_aspect_ratio(self, index):
image = self.coco.loadImgs(self.image_ids[index])[0]
return float(image['width']) / float(image['height'])
Dateset中的transform类的实现
实现了两种transform类型, Resizer()
和Normilizer()
。数据的均值为[0.485, 0.456, 0.406]
,方差为:[0.229, 0.224, 0.225]
。利用数组广播机制可以很容易写出Normilizer()
:
class Normilizer(object):
def __init__(self):
self.mean = np.array([[[0.485, 0.456, 0.406]]], dtype=np.float32)
self.std = np.array([[[0.229, 0.224, 0.225]]], dtype=np.float32)
def __call__(self, sample):
image, anns = sample['img'], sample['ann']
return {'img':(image.astype(np.float32)-self.mean)/ self.std,
'ann':anns}
Resizer()
类要返回原图片被放缩的倍数。
class Resizer():
def __call__(self, sample, targetSize=608, maxSize=1024, pad_N=32):
image, anns = sample['img'], sample['ann']
rows, cols = image.shape[:2]
smaller_size, larger_size = min(rows, cols), max(rows, cols)
scale = targetSize / smaller_size
if larger_size * scale > maxSize:
scale = maxSize / larger_size
image = skimage.transform.resize(image.astype(np.float64),
(int(round(rows*scale)),
int(round(cols*scale))),
mode='constant')
rows, cols, cns = image.shape[:3]
# 填补放缩后的图片,并使其尺寸为32的整倍数
pad_w, pad_h = (pad_N - cols % pad_N), (pad_N - rows % pad_N)
new_image = np.zeros((rows + pad_h, cols + pad_w, cns)).astype(np.float32)
new_image[:rows, :cols, :] = image.astype(np.float32)
anns[:, :4] *= scale
return {'img': torch.from_numpy(new_image),
'ann': torch.from_numpy(anns),
'scale':scale}
DataLoader中的collate_fn和batch_sampler实现
batch_sampler 提供了从Dataset中进行采样的方法,我们按照原始图像尺寸比例进行排序进行采样。这个类要集成torch.utils.data.Sampler
类,并实现__len__()
和__iter__()
两个方法。
drop_last
参数是指当数据集中样本个数不能被batch_size
整除时,不能组成完整minibatch样本的处理方式,具体可以通过处理__len__()
方法控制长度实现。
class AspectRatioBasedSampler(Sampler):
def __init__(self, dataset, batch_size, drop_last):
self.dataset = dataset
self.batch_size = batch_size
self.drop_last = drop_last
self.groups = self.group_images()
def group_images(self):
order = list(range(len(self.dataset)))
order.sort(key=lambda x: self.dataset.image_aspect_ratio(x))
return [[order[x % len(order)] for x in range(i, i+self.batch_size)]
for i in range(0, len(order), self.batch_size)]
def __iter__(self):
random.shuffle(self.groups)
for group in self.groups:
yield group
def __len__(self):
if self.drop_last:
return len(self.dataset) // self.batch_size
else:
return (len(self.dataset) + self.batch_size - 1) // self.batch_size
通过batch_sampler
采样得到的样本数据,其图像尺寸可能不完全一致,这时就需要用到collate_fn
参数指定被采样样本图片尺寸的调整方式。通常的做法是,获得这组样本中图片尺寸的最大值 (Width_{max})和$Height_{max} $,然后将改组样本中所有图像的尺寸调整 $ Height_{max} imes Width_{max} $ 最终返回图像数据为: $ BatchSize imes Height_{max} imes Width_{max} imes 3 $
此外,每个样本中的BBs的数量也可能不同,设BBs数量最大值为 (Ann_{max}) ,也要将标签和类型尺寸调整相同,对于BBs小于 (Ann_{max}) 的样本,补充-1。最终返回标签数据为:(BatchSize imes Ann_{max} imes 5)
def collater(data):
imgs = [s['img'] for s in data]
annots = [s['annot'] for s in data]
scales = [s['scale'] for s in data]
widths = [int(s.shape[0]) for s in imgs]
heights = [int(s.shape[1]) for s in imgs]
batch_size = len(imgs)
max_width = np.array(widths).max()
max_height = np.array(heights).max()
padded_imgs = torch.zeros(batch_size, max_width, max_height, 3)
for i in range(batch_size):
img = imgs[i]
padded_imgs[i, :int(img.shape[0]), :int(img.shape[1]), :] = img
max_num_annots = max(annot.shape[0] for annot in annots)
if max_num_annots > 0:
annot_padded = torch.ones((len(annots), max_num_annots, 5)) * -1
if max_num_annots > 0:
for idx, annot in enumerate(annots):
#print(annot.shape)
if annot.shape[0] > 0:
annot_padded[idx, :annot.shape[0], :] = annot
else:
annot_padded = torch.ones((len(annots), 1, 5)) * -1
padded_imgs = padded_imgs.permute(0, 3, 1, 2)
return {'img': padded_imgs, 'annot': annot_padded, 'scale': scales}
数据显示模块
使用cv2
实现了数据的显示。要注意从DataLoader
中得到的数据是三部分的:
{'img': torch.tensor((batch_size, height, width, 3)), 'ann': torch.tensor((batch_size, num_ann, 5), 'scale': scalar }
其中‘ann'的第五列是类型索引,需要结合SimpleCoCoDataset
类中的self.labels
获得对应的类型。
def my_coco_show(samples, labels):
image, anns, scales = samples['img'].numpy(), samples['ann'].numpy(), samples['scale']
imgIdx = 1
for img, ann, scale in zip(image, anns, scales):
# 去掉补充的-1
ann = ann[ann[:, 4] != -1]
if ann.shape[0] == 0:
continue
# 通过类型索引获得类型
classes = []
for idx in ann[:, 4]:
classes.append(labels[int(idx)])
# 反标准化
img = np.transpose(img, (1, 2, 0))
img = img * np.array([[[0.229, 0.224, 0.225]]]) + np.array([[[0.485, 0.456, 0.406]]])
for idx in range(ann.shape[0]):
p1 = (int(round(ann[idx, 0])), int(round(ann[idx, 1])))
p2 = (int(round(ann[idx, 2])), int(round(ann[idx, 3])))
cv2.rectangle(img, p1,p2, (255, 0, 0), 2)
# 图像,文字内容, 坐标 ,字体,大小,颜色,字体厚度
cv2.putText(img, classes[idx], (p2[0] - 40, p2[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, 8)
winName = str(imgIdx)
cv2.namedWindow(winName, cv2.WINDOW_AUTOSIZE)
cv2.moveWindow(winName, 10, 10)
cv2.imshow(winName, img[:,:,::-1])
cv2.waitKey(0)
cv2.destroyWindow(winName)
imgIdx += 1