• 大数据平台学习(三)----spark核心编程


    spark架构原理

     

    原理图:

     创建RDD

     一是使用程序中的集合创建RDD,主要用于进行测试,可以实际部署到集群运行之前,

    自己使用集合构造测试数据,来测试后面的spark应用的流程;

    二是使用本地文件创建RDD,主要用于的场景为在本地临时性地处理一些存储了大量数据的文件;

    三是使用HDFS文件创建RDD,主要用于针对HDFS上存储的大数据,进行离线批处理操作

    操作RDD

    转化操作:

    行为操作:

    RDD持久化

    为什么要执行RDD持久化?

     RDD持久化策略是什么?

    Spark内核源码深度剖析

    原理图:

     宽依赖和窄依赖

     

    基于yarn的两种提交模式

     sparkcontext原理剖析

    master原理剖析与源码分析

    资源调度机制十分重要(两种资源调度机制)

    主备切换机制原理图:

    注册机制原理图:

    master资源调度算法原理:

    master是通过schedule方法进行资源调度,告知worker启动executor,,,

    1,schedule方法

    2,startExecutorOnWorkers在woker上开启executor进程

    3,  scheduleExecutorsOnWorker在每一个worker上调度资源

    判断该worker能否分配一个或者多个executor,能则分配相应的executor所需要的CPU核数;

    4,  allocateWorkerResourceToExecutor在worker上分配的具体资源

    五、launchDriver发起driver

    六、launchExecutor发起executor

    worker原理剖析:

     job触发流程原理剖析:

    其实最终是调用了SparkContext之前初始化时创建的DAGSchdule的runjob方法;

     DAGSchdule原理剖析:

    注:reduceByKey的作用就是对相同key的数据进行处理,最终每个key只保留一条记录;

            其作用对象是(key, value)形式的RDD;

     Taskschedule原理分析

     注:本地化级别种类:

    PROCESS_LOCAL:进程本地化,rdd和partition和task在同一个executor中;

    NODE_LOCAL:rdd的parttion和task,不在一个同一个executor中,但在同一个节点中;

    NO_PREF:没有本地化级别;

    RACK_LOCAL:机架本地化,至少rdd的parttion和task在一盒机架中;

    ANY:任意本地化级别;

    Executor原理剖析与源码分析

    1、work为application启动的executor,实际上是启动了CoarseGrainedExecutorBackend进程;

    2、获取driver的actor,向driver发送RegisterExecutor信息

    3、dirver注册executor成功之后,会发送RegisteredExecutor信息

    (此时CoarseGrainedExecutorBackend会创建Executor执行句柄,大部分功能都是通过Executor实现的)

    4、启动task,反序列化task,调用Executor执行器的launchTask()启动一个task;

    5、对每个task都会创建一个TaskRunner,将TaskRunner放入内存缓存中;

    (将task封装在一个线程TaskRunner),将线程丢入线程池中,然后执行线程池是自动实现了排队机制的

     

     Task原理剖析

    1、task是封装在一个线程中(taskRunner)

    2、调用run(),对序列化的task数据进行反序列化,然后通过通络通信,将需要的文件,资源,jar文件拷贝过来,

    通过反序列化操作,调用updateDependencies() 将整个Task数据反序列化回来;

     1 <span style="font-size:14px;">override def run(): Unit = {
     2       val threadMXBean = ManagementFactory.getThreadMXBean
     3       val taskMemoryManager = new TaskMemoryManager(env.memoryManager, taskId)
     4       val deserializeStartTime = System.currentTimeMillis()
     5       val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
     6         threadMXBean.getCurrentThreadCpuTime
     7       } else 0L
     8       Thread.currentThread.setContextClassLoader(replClassLoader)
     9       val ser = env.closureSerializer.newInstance()
    10       logInfo(s"Running $taskName (TID $taskId)")
    11       execBackend.statusUpdate(taskId, TaskState.RUNNING, EMPTY_BYTE_BUFFER)
    12       var taskStart: Long = 0
    13       var taskStartCpu: Long = 0
    14       startGCTime = computeTotalGcTime()
    15 
    16       try {
    17         //对序列化的task数据进行反序列化
    18         val (taskFiles, taskJars, taskProps, taskBytes) =
    19           Task.deserializeWithDependencies(serializedTask)
    20 
    21         // Must be set before <span style="color:#ff0000;">updateDependencies</span>() is called, in case fetching dependencies
    22         // requires access to properties contained within (e.g. for access control).
    23         Executor.taskDeserializationProps.set(taskProps)
    24         //然后通过网络通信,将需要的文件,资源呢、jar拷贝过来
    25         updateDependencies(taskFiles, taskJars)
    26         //通过反序列化操作,将整个Task的数据反序列化回来
    27        task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader)
    28         task.localProperties = taskProps
    29         task.setTaskMemoryManager(taskMemoryManager)
    30 
    31         // If this task has been killed before we deserialized it, let's quit now. Otherwise,
    32         // continue executing the task.
    33         if (killed) {
    34           // Throw an exception rather than returning, because returning within a try{} block
    35           // causes a NonLocalReturnControl exception to be thrown. The NonLocalReturnControl
    36           // exception will be caught by the catch block, leading to an incorrect ExceptionFailure
    37           // for the task.
    38           throw new TaskKilledException
    39         }
    40 
    41         logDebug("Task " + taskId + "'s epoch is " + task.epoch)
    42         env.mapOutputTracker.updateEpoch(task.epoch)
    43 
    44         // Run the actual task and measure its runtime.
    45         //计算task的开始时间
    46         taskStart = System.currentTimeMillis()
    47         taskStartCpu = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
    48           threadMXBean.getCurrentThreadCpuTime
    49         } else 0L
    50         var threwException = true
    51         val value = try {
    52         调用task的run()
    53           val res = task.run(
    54             taskAttemptId = taskId,
    55             attemptNumber = attemptNumber,
    56             metricsSystem = env.metricsSystem)
    57           threwException = false
    58           res
    59         } finally {
    60           val releasedLocks = env.blockManager.releaseAllLocksForTask(taskId)
    61           val freedMemory = taskMemoryManager.cleanUpAllAllocatedMemory()
    62 
    63           if (freedMemory > 0 && !threwException) {
    64             val errMsg = s"Managed memory leak detected; size = $freedMemory bytes, TID = $taskId"
    65             if (conf.getBoolean("spark.unsafe.exceptionOnMemoryLeak", false)) {
    66               throw new SparkException(errMsg)
    67             } else {
    68               logWarning(errMsg)
    69             }
    70           }
    71 
    72           if (releasedLocks.nonEmpty && !threwException) {
    73             val errMsg =
    74               s"${releasedLocks.size} block locks were not released by TID = $taskId:
    " +
    75                 releasedLocks.mkString("[", ", ", "]")
    76             if (conf.getBoolean("spark.storage.exceptionOnPinLeak", false)) {
    77               throw new SparkException(errMsg)
    78             } else {
    79               logWarning(errMsg)
    80             }
    81           }
    82         }
    83         val taskFinish = System.currentTimeMillis()
    84         val taskFinishCpu = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
    85           threadMXBean.getCurrentThreadCpuTime
    86         } else 0L
    87 
    88         // If the task has been killed, let's fail it.
    89         if (task.killed) {
    90           throw new TaskKilledException
    91         }    </span>
    92

    3、updateDependencies() 主要是获取hadoop的配置文件,使用了java的synchronized多线程访问方式,

    task是以java线程的方式,在一个CoarseGrainedExecutorBackend进程内并发运行的,因此在执行一些业务逻辑

    的时候,需要访问一些共享资源,就会出现多线程并发访问的安全问题;

     1 <span style="font-size:14px;"> private def updateDependencies(newFiles: HashMap[String, Long], newJars: HashMap[String, Long]) {
     2     //获取hadoop的配置文件
     3     lazy val hadoopConf = SparkHadoopUtil.get.newConfiguration(conf)
     4     //使用了java的synchronized多线程并发访问方式
     5     //task是以java线程的方式,在一个CoarseGrainedExecutorBackend进程内并发运行的
     6     //因此在执行一些业务逻辑的时候,需要访问一些共享资源,就会出现多线程并发访问安全问题
     7     synchronized {
     8       // Fetch missing dependencies
     9       //遍历要拉取的文件
    10       for ((name, timestamp) <- newFiles if currentFiles.getOrElse(name, -1L) < timestamp) {
    11         logInfo("Fetching " + name + " with timestamp " + timestamp)
    12         // Fetch file with useCache mode, close cache for local mode.
    13         //通过Utils的fetchFile(),通过网络通信,从远程拉取文件
    14        Utils.fetchFile(name, new File(SparkFiles.getRootDirectory()), conf,
    15           env.securityManager, hadoopConf, timestamp, useCache = !isLocal)
    16         currentFiles(name) = timestamp
    17       }
    18       //遍历要拉取得jar
    19       for ((name, timestamp) <- newJars) {
    20         val localName = name.split("/").last
    21         val currentTimeStamp = currentJars.get(name)
    22           .orElse(currentJars.get(localName))
    23           .getOrElse(-1L)
    24         if (currentTimeStamp < timestamp) {
    25           logInfo("Fetching " + name + " with timestamp " + timestamp)
    26           // Fetch file with useCache mode, close cache for local mode.
    27           Utils.fetchFile(name, new File(SparkFiles.getRootDirectory()), conf,
    28             env.securityManager, hadoopConf, timestamp, useCache = !isLocal)
    29           currentJars(name) = timestamp
    30           // Add it to our class loader
    31           val url = new File(SparkFiles.getRootDirectory(), localName).toURI.toURL
    32           if (!urlClassLoader.getURLs().contains(url)) {
    33             logInfo("Adding " + url + " to class loader")
    34             urlClassLoader.addURL(url)
    35           }
    36         }
    37       }
    38     }
    39   }    </span>
    40

     4、task的run方法,创建了Taskcontext,里面记录了task的一些全局性的数据,还包括task重试了几次,task属于

    哪个stage,task处理的是rdd的哪个parttion,然后调用抽象方法runTask();

     1 <span style="font-size:14px;">final def run(
     2       taskAttemptId: Long,
     3       attemptNumber: Int,
     4       metricsSystem: MetricsSystem): T = {
     5     SparkEnv.get.blockManager.registerTask(taskAttemptId)
     6     //创建了Taskcontext,里面记录了task的一些全局性的数据
     7     //包括task重试了几次,task属于哪个stage,task处理的是rdd的哪个partition
     8     context = new TaskContextImpl(
     9       stageId,
    10       partitionId,
    11       taskAttemptId,
    12       attemptNumber,
    13       taskMemoryManager,
    14       localProperties,
    15       metricsSystem,
    16       metrics)
    17     TaskContext.setTaskContext(context)
    18     taskThread = Thread.currentThread()
    19 
    20     if (_killed) {
    21       kill(interruptThread = false)
    22     }
    23 
    24     new CallerContext("TASK", appId, appAttemptId, jobId, Option(stageId), Option(stageAttemptId),
    25       Option(taskAttemptId), Option(attemptNumber)).setCurrentContext()
    26 
    27     try {
    28     //调用抽象方法runTask()
    29       runTask(context)
    30     } catch {
    31       case e: Throwable =>
    32         // Catch all errors; run task failure callbacks, and rethrow the exception.
    33         try {
    34           context.markTaskFailed(e)
    35         } catch {
    36           case t: Throwable =>
    37             e.addSuppressed(t)
    38         }
    39         throw e
    40     } finally {
    41       // Call the task completion callbacks.
    42       context.markTaskCompleted()
    43       try {
    44         Utils.tryLogNonFatalError {
    45           // Release memory used by this thread for unrolling blocks
    46           SparkEnv.get.blockManager.memoryStore.releaseUnrollMemoryForThisTask(MemoryMode.ON_HEAP)
    47           SparkEnv.get.blockManager.memoryStore.releaseUnrollMemoryForThisTask(MemoryMode.OFF_HEAP)
    48           // Notify any tasks waiting for execution memory to be freed to wake up and try to
    49           // acquire memory again. This makes impossible the scenario where a task sleeps forever
    50           // because there are no other tasks left to notify it. Since this is safe to do but may
    51           // not be strictly necessary, we should revisit whether we can remove this in the future.
    52           val memoryManager = SparkEnv.get.memoryManager
    53           memoryManager.synchronized { memoryManager.notifyAll() }
    54         }
    55       } finally {
    56         TaskContext.unset()
    57       }
    58     }
    59   }</span>
    60 
    

    5、抽象方法runTask(),需要Task的子类去实现,ShuffleMapTask、ResaultTask;

    1 <span style="font-size:14px;">def runTask(context: TaskContext): T</span>

    6、一个ShuffleMapTask会将一个个Rdd元素切分为多个bucket基于在一个ShuffleDependency的中指定的partitioner,

     1 <span style="font-size:14px;">private[spark] class ShuffleMapTask(
     2     stageId: Int,
     3     stageAttemptId: Int,
     4     taskBinary: Broadcast[Array[Byte]],
     5     partition: Partition,
     6     @transient private var locs: Seq[TaskLocation],
     7     metrics: TaskMetrics,
     8     localProperties: Properties,
     9     jobId: Option[Int] = None,
    10     appId: Option[String] = None,
    11     appAttemptId: Option[String] = None)
    12   extends Task[MapStatus](stageId, stageAttemptId, partition.index, metrics, localProperties, jobId,
    13     appId, appAttemptId)
    14   with Logging</span>

    7、runTask有MapStatus返回值,对task要处理的数据做一些反序列化操作,然后通过广播变量拿到要处理rdd那部分

    数据,获取shuffleManager,调用rdd的iterator(),并且传入了当前要执行的哪个parttion,rdd的iterator(),实现

    了针对rdd的某个parttion执行我们定义的算子,之后返回的数据通过ShuffleWriter,经过Hashpartioner后,写入自己对应

    bucket中,最后返回mapstatus,里面封装了计算后的数据,存储在Blockmanager中;

     1 <span style="font-size:14px;">override def runTask(context: TaskContext): MapStatus = {
     2     // Deserialize the RDD using the broadcast variable.
     3     val threadMXBean = ManagementFactory.getThreadMXBean
     4     val deserializeStartTime = System.currentTimeMillis()
     5     val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
     6       threadMXBean.getCurrentThreadCpuTime
     7     } else 0L
     8     //对task要处理的数据做一些反序列化操作
     9     //通过广播变量拿到要处理的rdd那部分数据
    10     val ser = SparkEnv.get.closureSerializer.newInstance()
    11     val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
    12       ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
    13     _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
    14     _executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
    15       threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime
    16     } else 0L
    17 
    18     var writer: ShuffleWriter[Any, Any] = null
    19     try {
    20     //获取shuffleManager
    21       val manager = SparkEnv.get.shuffleManager
    22       //从shuffleManager中获取writer
    23       writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
    24         //调用了rdd的iterator(),并且传入了当前要执行的哪个partition
    25      //rdd的iterator(),实现了针对rdd的某个parttion执行我们自己定义的算子
    26      //执行完我们自己定义的算子,返回的数据通过ShuffleWriter,经过Hashpartioner后,写入自己对应的分区bucket中
    27      writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
    28       //最后返回MapStatus,里面封装了计算后的数据,存储在Blockmanager中
    29       writer.stop(success = true).get
    30     } catch {
    31       case e: Exception =>
    32         try {
    33           if (writer != null) {
    34             writer.stop(success = false)
    35           }
    36         } catch {
    37           case e: Exception =>
    38             log.debug("Could not stop writer", e)
    39         }
    40         throw e
    41     }
    42   } </span>
    

     8、MapPartitionsRDD

    针对RDD的某个partition,执行我们给定的算子或者函数;

    (注:可以理解成自己定义的算子或者函数,spark对其进行了封装,这里针对rdd的parttion,执行自定义的计算

    操作,并返回新的rdd的parttion的数据)

     1 <span style="font-size:14px;">private[spark] class MapPartitionsRDD[U: ClassTag, T: ClassTag](
     2     var prev: RDD[T],
     3     f: (TaskContext, Int, Iterator[T]) => Iterator[U],  // (TaskContext, partition index, iterator)
     4     preservesPartitioning: Boolean = false)
     5   extends RDD[U](prev) {
     6 
     7   override val partitioner = if (preservesPartitioning) firstParent[T].partitioner else None
     8 
     9   override def getPartitions: Array[Partition] = firstParent[T].partitions
    10 //针对rdd的某个partiton,执行我们给定的算子或者函数
    11   //f:可以理解成自己定义的算子或者函数,spark内部进行了封装
    12   //这里针对rdd的partition,执行自定义的计算操作,并返回 新的rdd的partition的数据
    13   override def compute(split: Partition, context: TaskContext): Iterator[U] =
    14     f(context, split.index, firstParent[T].iterator(split, context))
    15 
    16   override def clearDependencies() {
    17     super.clearDependencies()
    18     prev = null
    19   }
    20 }</span>

    9、statusUpdate()是个抽象方法

    1 <span style="font-size:14px;">execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult)
    2  // statusUpdate
    3  override def statusUpdate(taskId: Long, state: TaskState, data: ByteBuffer) {
    4     val msg = StatusUpdate(executorId, taskId, state, data)
    5     driver match {
    6       case Some(driverRef) => driverRef.send(msg)
    7       case None => logWarning(s"Drop $msg because has not yet connected to driver")
    8     }
    9   } </span>

    10、调用TaskSchedulerImpl的statusUpdate(),获取对应的taskset,task结束了,从内存移除;

     1 <span style="font-size:14px;">def statusUpdate(tid: Long, state: TaskState, serializedData: ByteBuffer) {
     2     var failedExecutor: Option[String] = None
     3     var reason: Option[ExecutorLossReason] = None
     4     synchronized {
     5       try {
     6         taskIdToTaskSetManager.get(tid) match {
     7           获取对应的taskSet
     8           case Some(taskSet) =>
     9             if (state == TaskState.LOST) {
    10               // TaskState.LOST is only used by the deprecated Mesos fine-grained scheduling mode,
    11               // where each executor corresponds to a single task, so mark the executor as failed.
    12               val execId = taskIdToExecutorId.getOrElse(tid, throw new IllegalStateException(
    13                 "taskIdToTaskSetManager.contains(tid) <=> taskIdToExecutorId.contains(tid)"))
    14               if (executorIdToRunningTaskIds.contains(execId)) {
    15                 reason = Some(
    16                   SlaveLost(s"Task $tid was lost, so marking the executor as lost as well."))
    17                 removeExecutor(execId, reason.get)
    18                 failedExecutor = Some(execId)
    19               }
    20             }
    21             if (TaskState.isFinished(state)) {
    22             //task结束了从内存中移除
    23              cleanupTaskState(tid)
    24               taskSet.removeRunningTask(tid)
    25               if (state == TaskState.FINISHED) {
    26                 taskResultGetter.enqueueSuccessfulTask(taskSet, tid, serializedData)
    27               } else if (Set(TaskState.FAILED, TaskState.KILLED, TaskState.LOST).contains(state)) {
    28                 taskResultGetter.enqueueFailedTask(taskSet, tid, state, serializedData)
    29               }
    30             }
    31           case None =>
    32             logError(
    33               ("Ignoring update with state %s for TID %s because its task set is gone (this is " +
    34                 "likely the result of receiving duplicate task finished status updates) or its " +
    35                 "executor has been marked as failed.")
    36                 .format(state, tid))
    37         }
    38       } catch {
    39         case e: Exception => logError("Exception in statusUpdate", e)
    40       }
    41     }
    42     // Update the DAGScheduler without holding a lock on this, since that can deadlock
    43     if (failedExecutor.isDefined) {
    44       assert(reason.isDefined)
    45       dagScheduler.executorLost(failedExecutor.get, reason.get)
    46       backend.reviveOffers()
    47     }
    48   } </span>

     普通Shuffle操作的原理剖析

     (注:什么是shuffle过程,它分为map中的和reduce中的

    首先看map中的:

    再看reduce端的shuffle

    shuffle的过程:

    优化过后的shuffle操作的原理剖析

     BlockManager原理剖析:

    1、Diver上有BlockManagerMaster,负责对各个节点上的BlockManager内部管理的元数据进行维护;

    2、每个节点的BlockManager有几个关键组件,DiskStore负责对磁盘上的数据进行读写,MemoryStore负责对内存中的数据进行读写,ConnectionManager负责建立BlockManager到远程其他节点的

    BlockManager的网络连接,BlockTransferService负责对远程其他节点的BlockManager数据读写;

    3、每个BlockManager创建之后,会向BlockManangerMaster进行注册,BlockManagerMaster会为其创建对应的BlockManagerInfo;

    4、BlockManager进行读写时,比如RDD运行过程中的一些中间数据,或者指定的persist(),会优先将数据写入内存,如果内存大小不够,再将内存部分数据写入磁盘;

    5、如果persist() 指定了要replica,那么会使用BlockTransferService将数据replica一份到其他节点的BlockManager上去;

    6、BlockManager进行读操作时,就会用ConnectionManager与有数据的BlockManager建立连接,然后用BlockTransferService从远程BlockManager读写数据;

    7、只要使用了BlockManager执行了数据增删改的操作,那么就必须将block的BlockStatus上报到BlockManagerInfo内部的BlockStatus进行增删改操作,从而对元数据进行维护;

    cacheManager原理剖析:

    CacheManager 源码解析 :

    1、cacheManager管理的是缓存中的数据,缓存可以是基于内存的缓存,也可以是基于磁盘的缓存;

    2、cacheManager需要通过BlockManager 来操作数据;

    3、每当Task运行的时候回调用RDD的compute方法进行计算,而compute方法会调用iterator方法;

    compute方法是final级别不能覆写但可以被子类去使用,可以看见RDD是优先使用内存的,如果存储级别

    不等于NONE的情况下,程序会先找CacheManager 获得数据,否则的话会看有没有进行checkpoint;

     

     4、cache在工作的时候会最大化的保留数据,但是数据不一定绝对完整,因为当前的计算机如果需要内存空间的话,那么内存中的数据必须让出空间,这是因为执行比缓存重要,此时如何在RDD持久化的时候同时指定了可以把数据放左Disk上,那么部分cache的数据可以从内存转入磁盘,否则的话,数据就会丢失;

    在进行Cache时,BlockManager会帮你进行管理,我们可以通过key到BlockManager中找出曾经缓存的数据;

     

     如果有BlockManager.get()方法没有返回任何数据,就调用acquireLockForPartition 方法,因为会有可能多条线程在操作数据,spark有一个东西叫慢任务StraggleTask 推迟,StraggleTask 推迟的时候一般都会运行两个任务在两台机器上;

     

     

    最后还是通过 BlockManager.get 来获得数据

     5、具体cacheManager在获得缓存数据的时候会通过BlockManager 来抓到数据,优先在本地找数据或者远程抓数据;

     BlockManger.getLocal然后转过来调用doGetLocal方法,在doGetLocal的实现中看到缓存其实不一定在内存中,

    缓存可以在存在、磁盘、也可以在offHeap(Tachyon)中;

     

     6、在上一步调用了getLocal方法后转过调用了doGetLocal

     

     

     

     

     

     7、在第5步中如果本地没有缓存的话,就调用getRemote方法从远程抓取数据;

     

     8、如果cacheManager没有通过BlockManager 获得缓存内容的话,其实会通过RDD的computeOrReadCheckpoint ()方法来获得数据;

     首先需要检查看当前的RDD是否进行了CheckPoint,如果进行了话就直接读取checkpoint的数据,否则的话就必需进行计算;

    checkpoint本身很重要,计算之后通过putInBlockManager 会把数据按照StorageLevel 重新缓存起来;

     

    9、如果数据缓存的空间不够,此时会调用memoryStore中的unrollSafety方法,里面有一个循环在内存中放数据;

    CheckPoint原理:

     

    原理分析:

    1、SparkContext的setCheckpointDir 设置了一个checkpoint 目录

     1 def setCheckpointDir(directory: String) {
     2 
     3     // If we are running on a cluster, log a warning if the directory is local.
     4     // Otherwise, the driver may attempt to reconstruct the checkpointed RDD from
     5     // its own local file system, which is incorrect because the checkpoint files
     6     // are actually on the executor machines.
     7     if (!isLocal && Utils.nonLocalPaths(directory).isEmpty) {
     8       logWarning("Spark is not running in local mode, therefore the checkpoint directory " +
     9         s"must not be on the local filesystem. Directory '$directory' " +
    10         "appears to be on the local filesystem.")
    11     }
    12     //利用hadoop的api创建了一个hdfs目录
    13     checkpointDir = Option(directory).map { dir =>
    14       val path = new Path(dir, UUID.randomUUID().toString)
    15       val fs = path.getFileSystem(hadoopConfiguration)
    16       fs.mkdirs(path)
    17       fs.getFileStatus(path).getPath.toString
    18     }
    19   }

    2、RDD核心的CheckPoint方法

    def checkpoint(): Unit = RDDCheckpointData.synchronized {
        // NOTE: we use a global lock here due to complexities downstream with ensuring
        // children RDD partitions point to the correct parent partitions. In the future
        // we should revisit this consideration.
        if (context.checkpointDir.isEmpty) {
          throw new SparkException("Checkpoint directory has not been set in the SparkContext")
        } else if (checkpointData.isEmpty) {
          //创建ReliableRDDCheckpointData指向的RDDCheckpointData的实例
          checkpointData = Some(new ReliableRDDCheckpointData(this))
        }
      }

    3、创建了一个ReliableRDDCheckpointData

    //ReliableRDDCheckpointData 的父类RDDCheckpointData
    private[spark] class ReliableRDDCheckpointData[T: ClassTag](@transient private val rdd: RDD[T])
      extends RDDCheckpointData[T](rdd) with Logging {
    
    ......
    
    }

    4、父类RDDCheckpointData

    /**
     * RDD 需要经过
     * 
     * [ Initialized  --> CheckpointingInProgress--> Checkpointed ] 
     * 这几个阶段才能被 checkpoint
     * 
     */
    private[spark] abstract class RDDCheckpointData[T: ClassTag](@transient private val rdd: RDD[T])
      extends Serializable {
    
      import CheckpointState._
    
      // The checkpoint state of the associated RDD.
      //标识CheckPoint的状态,第一次初始化时是Initialized
      protected var cpState = Initialized
    
    ......
    
    }

    checkpoint写入数据:

    1、Spark job运行最终会调用SparkContext的runJob方法将任务提交给Executor去执行;

     def runJob[T, U: ClassTag](
          rdd: RDD[T],
          func: (TaskContext, Iterator[T]) => U,
          partitions: Seq[Int],
          resultHandler: (Int, U) => Unit): Unit = {
        if (stopped.get()) {
          throw new IllegalStateException("SparkContext has been shutdown")
        }
        val callSite = getCallSite
        val cleanedFunc = clean(func)
        logInfo("Starting job: " + callSite.shortForm)
        if (conf.getBoolean("spark.logLineage", false)) {
          logInfo("RDD's recursive dependencies:
    " + rdd.toDebugString)
        }
        dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
        progressBar.foreach(_.finishAll())
        //在生产环境下会调用ReliableRDDCheckpointData的doCheckpoint方法
        rdd.doCheckpoint()
      }

    2、rdd.doCheckpoint()方法

    private[spark] def doCheckpoint(): Unit = {
        RDDOperationScope.withScope(sc, "checkpoint", allowNesting = false, ignoreParent = true) {
          if (!doCheckpointCalled) {
            doCheckpointCalled = true
            if (checkpointData.isDefined) {
              if (checkpointAllMarkedAncestors) {
                // TODO We can collect all the RDDs that needs to be checkpointed, and then checkpoint
                // them in parallel.
                // Checkpoint parents first because our lineage will be truncated after we
                // checkpoint ourselves
                dependencies.foreach(_.rdd.doCheckpoint())
              }
              checkpointData.get.checkpoint()
            } else {
              //遍历依赖的rdd,调用每个rdd的doCheckpoint方法
              dependencies.foreach(_.rdd.doCheckpoint())
            }
          }
        }
      }

    3、checkpointData类型是RDDCheckpointData中的doCheckpoint()方法;

     final def checkpoint(): Unit = {
        // Guard against multiple threads checkpointing the same RDD by
        // atomically flipping the state of this RDDCheckpointData
        RDDCheckpointData.synchronized {
          if (cpState == Initialized) {
            //1、标记当前状态为正在checkpoint中
            cpState = CheckpointingInProgress
          } else {
            return
          }
        }
        //2 这里调用的是子类的doCheckpoint()
        val newRDD = doCheckpoint()
    
        // Update our state and truncate the RDD lineage
         // 3 标记checkpoint已完成,清空RDD依赖
        RDDCheckpointData.synchronized {
          cpRDD = Some(newRDD)
          cpState = Checkpointed
          rdd.markCheckpointed()
        }
      }

    4、子类ReliableRDDCheckpointData的doCheckpoint()方法;

     1 protected override def doCheckpoint(): CheckpointRDD[T] = {
     2     /**
     3      * 为该 rdd 生成一个新的依赖,设置该 rdd 的 parent rdd 为 CheckpointRDD
     4      * 该 CheckpointRDD 负责以后读取在文件系统上的   checkpoint 文件,生成该 rdd 的 partition
     5      */
     6     val newRDD = ReliableCheckpointRDD.writeRDDToCheckpointDirectory(rdd, cpDir)
     7 
     8     // Optionally clean our checkpoint files if the reference is out of scope
     9     // 是否清除checkpoint文件如果超出引用的资源范围
    10     if (rdd.conf.getBoolean("spark.cleaner.referenceTracking.cleanCheckpoints", false)) {
    11       rdd.context.cleaner.foreach { cleaner =>
    12         cleaner.registerRDDCheckpointDataForCleanup(newRDD, rdd.id)
    13       }
    14     }
    15 
    16     logInfo(s"Done checkpointing RDD ${rdd.id} to $cpDir, new parent is RDD ${newRDD.id}")
    17     //  将新产生的RDD返回给父类
    18     newRDD
    19   }

    5、ReliableCheckpointRDD.writeRDDToCheckpointDirectory(rdd, cpDir)方法

     /**
       * Write RDD to checkpoint files and return a ReliableCheckpointRDD representing the RDD.
       * 
       * 触发runJob 来执行当前的RDD 中的数据写到Checkpoint 的目录中,同时会产生ReliableCheckpointRDD 实例
       */
      def writeRDDToCheckpointDirectory[T: ClassTag](
          originalRDD: RDD[T],
          checkpointDir: String,
          blockSize: Int = -1): ReliableCheckpointRDD[T] = {
        val checkpointStartTimeNs = System.nanoTime()
    
        val sc = originalRDD.sparkContext
    
        // Create the output path for the checkpoint
        //把checkpointDir设置我们checkpoint的目录
        val checkpointDirPath = new Path(checkpointDir)
        // 获取HDFS文件系统API接口
        val fs = checkpointDirPath.getFileSystem(sc.hadoopConfiguration)
        // 创建目录
        if (!fs.mkdirs(checkpointDirPath)) {
          throw new SparkException(s"Failed to create checkpoint path $checkpointDirPath")
        }
    
        // Save to file, and reload it as an RDD
        // 将配置文件信息广播到所有节点
        val broadcastedConf = sc.broadcast(
          new SerializableConfiguration(sc.hadoopConfiguration))
        // TODO: This is expensive because it computes the RDD again unnecessarily (SPARK-8582)
        //  核心代码
         /**
          * 此处新提交一个Job,也是对RDD进行计算,那么如果原有的RDD对结果进行了cache的话,
          * 那么是不是减少了很多的计算呢,这就是为啥checkpoint的时候强烈推荐进行cache的缘故
          */
        sc.runJob(originalRDD,
          writePartitionToCheckpointFile[T](checkpointDirPath.toString, broadcastedConf) _)
    
        // 如果rdd的partitioner不为空,则将partitioner写入checkpoint目录
        if (originalRDD.partitioner.nonEmpty) {
          writePartitionerToCheckpointDir(sc, originalRDD.partitioner.get, checkpointDirPath)
        }
        
        val checkpointDurationMs =
          TimeUnit.NANOSECONDS.toMillis(System.nanoTime() - checkpointStartTimeNs)
        logInfo(s"Checkpointing took $checkpointDurationMs ms.")
        
        // 创建一个CheckpointRDD,该分区数目应该和原始的rdd的分区数是一样的
        val newRDD = new ReliableCheckpointRDD[T](
          sc, checkpointDirPath.toString, originalRDD.partitioner)
        if (newRDD.partitions.length != originalRDD.partitions.length) {
          throw new SparkException(
            "Checkpoint RDD has a different number of partitions from original RDD. Original " +
              s"RDD [ID: ${originalRDD.id}, num of partitions: ${originalRDD.partitions.length}]; " +
              s"Checkpoint RDD [ID: ${newRDD.id}, num of partitions: " +
              s"${newRDD.partitions.length}].")
        }
        newRDD
      }

    最后,会返回新的CheckpointRDD ,父类将它复值给成员cpRDD,最终标记当前状态为Checkpointed并清空当RDD的依赖链;到此Checkpoint的数据就被序列化到HDFS上了;

    checkpoint读出数据

    1、RDD的iterator()

     1 /**
     2    * 先调用presist(),再调用checkpoint()
     3    * 先执行到rdd的iterator()的时候,storageLevel != StorageLevel.NONE,就会通过CacheManager获取数据
     4    * 此时发生BlockManager获取不到数据,就会第一次计算数据,在通过BlockManager进行持久化
     5    * 
     6    * rdd的job执行结束,启动单独的一个job,进行checkpoint,
     7    * 下一次又运行到rdd的iterator()方法就会发现持久化级别不为空,默认从BlockManager中读取持久化数据(正常情况下)
     8    * 
     9    * 在非正常情况下,就会调用computeOrReadCheckpoint方法,判断如果isCheckpoint为ture,
    10    * 就会调用父rdd的iterator(),从外部文件系统中读取数据
    11    */
    12   final def iterator(split: Partition, context: TaskContext): Iterator[T] = {
    13     if (storageLevel != StorageLevel.NONE) {
    14       getOrCompute(split, context)
    15     } else {
    16       //进行RDD的partition计算
    17       computeOrReadCheckpoint(split, context)
    18     }
    19   }

    2、继续调用computeOrReadCheckpoint

    1 private[spark] def computeOrReadCheckpoint(split: Partition, context: TaskContext): Iterator[T] =
    2   {
    3     if (isCheckpointedAndMaterialized) {
    4       firstParent[T].iterator(split, context)
    5     } else {
    6       //抽象方法,找具体实现类,比如MapPartitionsRDD
    7       compute(split, context)
    8     }
    9   }

    调用rdd.iterator() 去计算rdd的partition的时候,会调用computeOrReadCheckpoint(split: Partition)去查看该rdd是否被checkPoint过了,

    如果是,就调用rdd的parent rdd的iterator()也就是CheckpointRDD.iterator(),否则直接调用该RDD的compute

    3、CheckpointRDD(ReliableCheckpointRDD)的compute

    1  //Path上读取我们的CheckPoint数据
    2   override def compute(split: Partition, context: TaskContext): Iterator[T] = {
    3     val file = new Path(checkpointPath, ReliableCheckpointRDD.checkpointFileName(split.index))
    4     ReliableCheckpointRDD.readCheckpointFile(file, broadcastedConf, context)
    5   }

    4、readCheckpointFile方法

     1  def readCheckpointFile[T](
     2       path: Path,
     3       broadcastedConf: Broadcast[SerializableConfiguration],
     4       context: TaskContext): Iterator[T] = {
     5     val env = SparkEnv.get
     6     // 用hadoop API 读取HDFS上的数据
     7     val fs = path.getFileSystem(broadcastedConf.value.value)
     8     val bufferSize = env.conf.getInt("spark.buffer.size", 65536)
     9     val fileInputStream = {
    10       val fileStream = fs.open(path, bufferSize)
    11       if (env.conf.get(CHECKPOINT_COMPRESS)) {
    12         CompressionCodec.createCodec(env.conf).compressedInputStream(fileStream)
    13       } else {
    14         fileStream
    15       }
    16     }
    17     val serializer = env.serializer.newInstance()
    18     val deserializeStream = serializer.deserializeStream(fileInputStream)
    19 
    20     // Register an on-task-completion callback to close the input stream.
    21     context.addTaskCompletionListener[Unit](context => deserializeStream.close())
    22     //反序列化数据后转换为一个Iterator
    23     deserializeStream.asIterator.asInstanceOf[Iterator[T]]
    24   }
  • 相关阅读:
    NX CAM二次开发-UF_OPER_unload_path卸载刀路
    NX CAM二次开发-UF_PARAM_set_int_value不勾选侧面与底面余量一致
    NX CAM二次开发-UF_PARAM_set_subobj_ptr_value设置进给率
    NX CAM二次开发-UF_PARAM_set_double_value设置转数
    NX CAM二次开发-UF_NCGROUP_ask_object_of_name通过名称获得指定组(NCGroup)的TAG
    NX CAM二次开发-修改操作所属的刀具,几何体,程序组等
    VC++-OLE/COM将EXCEL导出PDF,ExcelBook.ExportAsFixedFormat
    VC++将PNG转成二进制文件,在将二进制文件转回PNG图片
    实例开发-NX二次开发批量设置体到图层工具
    NX-二次开发UFUN在面上创建等参数曲线UF_MODL_create_isocurve
  • 原文地址:https://www.cnblogs.com/zhzJAVA11/p/10430833.html
Copyright © 2020-2023  润新知