• 基于mllib的协同过滤实战(电影推荐)


    //加载需要的包

    import org.apache.spark.rdd._ import org.apache.spark.mllib.recommendation.{ALS, Rating, MatrixFactorizationModel}

    //读取数据
    val ratings = sc.textFile("D:/BaiduYunDownload/machine-learning/movielens/medium/ratings.dat").map { line =>
    val fields = line.split("::")
    (fields(3).toLong % 10, Rating(fields(0).toInt, fields(1).toInt, fields(2).toDouble))
    }
      
    //数据情况探索(评分数,用户数,物品数)
    val numRatings = ratings.count()
    val numUsers = ratings.map(_._2.user).distinct().count()
    val numMovies = ratings.map(_._2.product).distinct().count()
    println("Got " + numRatings + " ratings from " + numUsers + " users on " + numMovies + " movies.")
      
     

      //某个人评分数据

      

    val myRatingsRDD = sc.textFile("D:/BaiduYunDownload/machine-learning/bin/personalRatings.txt").map { line =>
    val fields = line.split("::")
    Rating(fields(0).toInt, fields(1).toInt, fields(2).toDouble)
    }
      
     

      //拆分训练集,校验集,测试集(ratings是(Int,Rating)格式,取values即可)

    val numPartitions = 4
    val training = ratings.filter(x => x._1 < 6)
    .values
    .union(myRatingsRDD) //加入个人评分数据
    .repartition(numPartitions)
    .cache()
    val validation = ratings.filter(x => x._1 >= 6 && x._1 < 8)
    .values
    .repartition(numPartitions)
    .cache()
    val test = ratings.filter(x => x._1 >= 8).values.cache()
    val numTraining = training.count()
    val numValidation = validation.count()
    val numTest = test.count()
    println("Training: " + numTraining + ", validation: " + numValidation + ", test: " + numTest)
      
     
    // 校验集预测数据和实际数据之间的均方根误差
    def computeRmse(model: MatrixFactorizationModel, data: RDD[Rating], n: Long): Double = {
    val predictions: RDD[Rating] = model.predict(data.map(x => (x.user, x.product)))
    val predictionsAndRatings = predictions.map(x => ((x.user, x.product), x.rating))
    .join(data.map(x => ((x.user, x.product), x.rating)))
    .values
    math.sqrt(predictionsAndRatings.map(x => (x._1 - x._2) * (x._1 - x._2)).reduce(_ + _) / n)
    }
     
    //训练不同参数下的模型,并在校验集中验证,获取最佳参数下的模型
    val ranks = List(8, 12)
    val lambdas = List(0.1, 10.0)
    val numIters = List(10, 20)
    var bestModel: Option[MatrixFactorizationModel] = None
    var bestValidationRmse = Double.MaxValue
    var bestRank = 0
    var bestLambda = -1.0
    var bestNumIter = -1
    for (rank <- ranks; lambda <- lambdas; numIter <- numIters) {
    val model = ALS.train(training, rank, numIter, lambda)
    val validationRmse = computeRmse(model, validation, numValidation)
    println("RMSE (validation) = " + validationRmse + " for the model trained with rank = "
    + rank + ", lambda = " + lambda + ", and numIter = " + numIter + ".")
    if (validationRmse < bestValidationRmse) {
    bestModel = Some(model)
    bestValidationRmse = validationRmse
    bestRank = rank
    bestLambda = lambda
    bestNumIter = numIter
    }
    }
     
    //用最佳模型作用于测试集,并计算预测评分和实际评分之间的均方根误差
    val testRmse = computeRmse(bestModel.get, test, numTest)
    println("The best model was trained with rank = " + bestRank + " and lambda = " + bestLambda
    + ", and numIter = " + bestNumIter + ", and its RMSE on the test set is " + testRmse + ".")
      
    
    
     
    //比较将最佳模型作用于测试集的结果:testRmse 与 仅仅用均值预测的结果进行比较,计算模型提升度。
    val meanRating = training.union(validation).map(_.rating).mean
    val baselineRmse = math.sqrt(test.map(x => (meanRating - x.rating) * (meanRating - x.rating)).mean)
    val improvement = (baselineRmse - testRmse) / baselineRmse * 100
    println("The best model improves the baseline by " + "%1.2f".format(improvement) + "%.")
      
    
    
     
    //装载电影目录对照表(电影ID->电影标题)
    val movies = sc.textFile("D:/BaiduYunDownload/machine-learning/movielens/medium/movies.dat").map { line =>
    val fields = line.split("::")
    (fields(0).toInt, fields(1))
    }.collect().toMap
      
     
    // 推荐前十部最感兴趣的电影,注意要剔除用户已经评分的电影
    val myRatedMovieIds = myRatingsRDD.map(_.product).collect().toSet
    val candidates = sc.parallelize(movies.keys.filter(!myRatedMovieIds.contains(_)).toSeq)
    val recommendations = bestModel.get{
    .predict(candidates.map((0, _)))
    .collect()
    .sortBy(-_.rating)
    .take(10)}
      
     
      //打印结果
    var i = 1
    println("Movies recommended for you:")
    recommendations.foreach { r =>
    println("%2d".format(i) + ": " + movies(r.product))
    i += 1
    }
      
    
    
     over!!

      

  • 相关阅读:
    转inux Shell编程入门
    转CentOS — MySQL备份 Shell 脚本
    JAVA4种线程池的使用
    http://cyber-dojo.org/
    tomcat内存大小设置
    rails的数据库查询方法
    Java 微信公众号上传永久素材的方法
    微信回复图文消息
    plsql解决64位解决办法
    Ruby中使用patch HTTP方法
  • 原文地址:https://www.cnblogs.com/zhw-080/p/5779459.html
Copyright © 2020-2023  润新知