Necklace of Beads
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 9655 | Accepted: 3968 |
Description
Beads of red, blue or green colors are connected together into a circular necklace of n beads ( n < 24 ). If the repetitions that are produced by rotation around the center of the circular necklace or reflection to the axis of symmetry are all neglected, how many different forms of the necklace are there?
Input
The input has several lines, and each line contains the input data n.
-1 denotes the end of the input file.
-1 denotes the end of the input file.
Output
The output should contain the output data: Number of different forms, in each line correspondent to the input data.
Sample Input
4 5 -1
Sample Output
21 39
Source
#include <iostream> #include <algorithm> #include <cmath> using namespace std; #define LL long long LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a % b); } int main(){ LL n, sum = 0; while(cin >> n && n != -1){ if(n == 0){ cout << 0 << endl; continue; } //旋转变换 //n种置换,步长为x的置换的循环节有GCD(x,n)个 for(int i = 1; i <= n; i++){ sum += pow(3, gcd(i, n)); } //翻转变换:要分奇偶 if(n & 1){ sum += n * pow(3, (n - 1) / 2 + 1); } else{ sum += n/2 * pow(3, (n - 2) / 2 + 2); //按两个点翻转 sum += n/2 * pow(3, n / 2); //按边翻转 } sum /= 2 * n; //除以G:总的置换个数 cout << sum << endl; sum = 0; } }