2014-03-19 04:11
题目:设计算法检查一棵二叉树是否为二叉搜索树。
解法:既然是二叉搜索树,也就是说左子树所有节点都小于根,右子树所有节点都大于根。如果你真的全都检查的话,那就做了很多重复工作。只需要将左边最靠右,和右边最靠左的节点和根进行比较,然后依照这个规则递归求解即可。
代码:
1 // 4.5 Check if a binary tree is binary search tree. 2 #include <cstdio> 3 using namespace std; 4 5 struct TreeNode { 6 int val; 7 TreeNode *left; 8 TreeNode *right; 9 10 TreeNode(int _val = 0): val(_val), left(nullptr), right(nullptr) {}; 11 }; 12 13 void constructBinaryTree(TreeNode *&root) 14 { 15 int val; 16 17 scanf("%d", &val); 18 if (val <= 0) { 19 root = nullptr; 20 } else { 21 root = new TreeNode(val); 22 23 constructBinaryTree(root->left); 24 constructBinaryTree(root->right); 25 } 26 } 27 28 bool postorderTraversal(TreeNode *root, TreeNode *&left_most, TreeNode *&right_most) 29 { 30 TreeNode *ll, *lr, *rl, *rr; 31 bool res_left = true, res_right = true; 32 33 if (root->left != nullptr) { 34 if (!postorderTraversal(root->left, ll, lr)) { 35 return false; 36 } 37 if (lr->val >= root->val) { 38 // all left nodes must be smaller than the root. 39 return false; 40 } 41 } else { 42 ll = lr = root; 43 } 44 45 if (root->right != nullptr) { 46 if (!postorderTraversal(root->right, rl, rr)) { 47 return false; 48 } 49 if (rl->val <= root->val) { 50 // all right nodes must be greater than the root. 51 return false; 52 } 53 } else { 54 rl = rr = root; 55 } 56 left_most = ll; 57 right_most = rr; 58 59 return true; 60 } 61 62 void clearBinaryTree(TreeNode *&root) { 63 if (root == nullptr) { 64 return; 65 } else { 66 clearBinaryTree(root->left); 67 clearBinaryTree(root->right); 68 delete root; 69 root = nullptr; 70 } 71 } 72 73 int main() 74 { 75 TreeNode *root; 76 TreeNode *left_most, *right_most; 77 78 while (true) { 79 constructBinaryTree(root); 80 if (root == nullptr) { 81 break; 82 } 83 84 left_most = right_most = nullptr; 85 if (postorderTraversal(root, left_most, right_most)) { 86 printf("Yes "); 87 } else { 88 printf("No "); 89 } 90 91 clearBinaryTree(root); 92 } 93 94 return 0; 95 }