• 《机器学习Python实现_10_08_集成学习_bagging_randomforest实现》


    一.简介

    为了让学习器越发的不同,randomforest的思路是在bagging的基础上再做一次特征的随机抽样,大致流程如下:

    png

    二.RandomForest:分类实现

    import os
    os.chdir('../')
    from ml_models import utils
    from ml_models.tree import CARTClassifier
    import copy
    import numpy as np
    
    """
    randomforest分类实现,封装到ml_models.ensemble
    """
    
    class RandomForestClassifier(object):
        def __init__(self, base_estimator=None, n_estimators=10, feature_sample=0.66):
            """
            :param base_estimator: 基学习器,允许异质;异质的情况下使用列表传入比如[estimator1,estimator2,...,estimator10],这时n_estimators会失效;
                                    同质的情况,单个estimator会被copy成n_estimators份
            :param n_estimators: 基学习器迭代数量
            :param feature_sample:特征抽样率
            """
            self.base_estimator = base_estimator
            self.n_estimators = n_estimators
            if self.base_estimator is None:
                # 默认使用决策树
                self.base_estimator = CARTClassifier()
            # 同质分类器
            if type(base_estimator) != list:
                estimator = self.base_estimator
                self.base_estimator = [copy.deepcopy(estimator) for _ in range(0, self.n_estimators)]
            # 异质分类器
            else:
                self.n_estimators = len(self.base_estimator)
            self.feature_sample = feature_sample
            # 记录每个基学习器选择的特征
            self.feature_indices = []
    
        def fit(self, x, y):
            # TODO:并行优化
            n_sample, n_feature = x.shape
            for estimator in self.base_estimator:
                # 重采样训练集
                indices = np.random.choice(n_sample, n_sample, replace=True)
                x_bootstrap = x[indices]
                y_bootstrap = y[indices]
                # 对特征抽样
                feature_indices = np.random.choice(n_feature, int(n_feature * self.feature_sample), replace=False)
                self.feature_indices.append(feature_indices)
                x_bootstrap = x_bootstrap[:, feature_indices]
                estimator.fit(x_bootstrap, y_bootstrap)
    
        def predict_proba(self, x):
            # TODO:并行优化
            probas = []
            for index, estimator in enumerate(self.base_estimator):
                probas.append(estimator.predict_proba(x[:, self.feature_indices[index]]))
            return np.mean(probas, axis=0)
    
        def predict(self, x):
            return np.argmax(self.predict_proba(x), axis=1)
    
    #造伪数据
    from sklearn.datasets import make_classification
    data, target = make_classification(n_samples=100, n_features=2, n_classes=2, n_informative=1, n_redundant=0,
                                       n_repeated=0, n_clusters_per_class=1, class_sep=.5,random_state=21)
    
    #同质
    classifier = RandomForestClassifier(feature_sample=0.6)
    classifier.fit(data, target)
    utils.plot_decision_function(data, target, classifier)
    

    png

    #异质
    from ml_models.linear_model import LogisticRegression
    from ml_models.svm import SVC
    classifier = RandomForestClassifier(base_estimator=[LogisticRegression(),SVC(kernel='rbf',C=5.0),CARTClassifier(max_depth=2)],feature_sample=0.6)
    classifier.fit(data, target)
    utils.plot_decision_function(data, target, classifier)
    

    png

    三.代码实现:回归

    from ml_models.tree import CARTRegressor
    
    """
    random forest回归实现,封装到ml_models.ensemble
    """
    
    class RandomForestRegressor(object):
        def __init__(self, base_estimator=None, n_estimators=10, feature_sample=0.66):
            """
            :param base_estimator: 基学习器,允许异质;异质的情况下使用列表传入比如[estimator1,estimator2,...,estimator10],这时n_estimators会失效;
                                    同质的情况,单个estimator会被copy成n_estimators份
            :param n_estimators: 基学习器迭代数量
            :param feature_sample:特征抽样率
            """
            self.base_estimator = base_estimator
            self.n_estimators = n_estimators
            if self.base_estimator is None:
                # 默认使用决策树
                self.base_estimator = CARTRegressor()
            # 同质
            if type(base_estimator) != list:
                estimator = self.base_estimator
                self.base_estimator = [copy.deepcopy(estimator) for _ in range(0, self.n_estimators)]
            # 异质
            else:
                self.n_estimators = len(self.base_estimator)
            self.feature_sample = feature_sample
            # 记录每个基学习器选择的特征
            self.feature_indices = []
    
        def fit(self, x, y):
            # TODO:并行优化
            n_sample, n_feature = x.shape
            for estimator in self.base_estimator:
                # 重采样训练集
                indices = np.random.choice(n_sample, n_sample, replace=True)
                x_bootstrap = x[indices]
                y_bootstrap = y[indices]
                # 对特征抽样
                feature_indices = np.random.choice(n_feature, int(n_feature * self.feature_sample), replace=False)
                self.feature_indices.append(feature_indices)
                x_bootstrap = x_bootstrap[:, feature_indices]
                estimator.fit(x_bootstrap, y_bootstrap)
    
        def predict(self, x):
            # TODO:并行优化
            preds = []
            for index, estimator in enumerate(self.base_estimator):
                preds.append(estimator.predict(x[:, self.feature_indices[index]]))
    
            return np.mean(preds, axis=0)
    
    #构造数据
    data = np.linspace(1, 10, num=100)
    target1 = 3*data[:50] + np.random.random(size=50)*3#添加噪声
    target2 = 3*data[50:] + np.random.random(size=50)*10#添加噪声
    target=np.concatenate([target1,target2])
    data = data.reshape((-1, 1))
    
    #同质
    import matplotlib.pyplot as plt
    model=RandomForestRegressor(base_estimator=CARTRegressor(),n_estimators=2,feature_sample=1)#feature就一列,没办法...
    model.fit(data,target)
    plt.scatter(data, target)
    plt.plot(data, model.predict(data), color='r')
    
    [<matplotlib.lines.Line2D at 0x18f3f5866d8>]
    

    png

    #异质
    from ml_models.linear_model import LinearRegression
    model=RandomForestRegressor(base_estimator=[LinearRegression(),CARTRegressor()],feature_sample=1)
    model.fit(data,target)
    plt.scatter(data, target)
    plt.plot(data, model.predict(data), color='r')
    
    [<matplotlib.lines.Line2D at 0x18f2d6dd160>]
    

    png

    作者: 努力的番茄

    出处: https://www.cnblogs.com/zhulei227/

    关于作者:专注于机器学习、深度学习、强化学习、NLP等领域!

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出.

  • 相关阅读:
    Dockerfile + Nginx.conf文件记录(用于前端项目部署)
    Dockerfile文件记录(用于后端项目部署)
    结合docker发布后端项目(基于gradle包管理)的shell脚本
    结合docker发布前端项目(基于npm包管理)的shell脚本
    Docker+Nginx使用流程(笔记)
    AntDesign getFieldDecorator 获取自定义组件的值
    c++ primer 第五版第七章
    c++ primer 第五版第六章
    c++ primer 第五版第五章
    c++ Primer 第五版习题答案第四章
  • 原文地址:https://www.cnblogs.com/zhulei227/p/14736816.html
Copyright © 2020-2023  润新知