• HDU-4035 Maze 概率DP


      题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4035

      很不错的概率DP题目,因为这题是无向图,所以要对叶节点和非叶节点考虑,然后列出方程后,因为数据很大,高斯消元如果不特定优化会超时,可以转化方程,然后求解系数。

    解法:<摘自KB神>

    题意:
    有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,
    从结点1出发,开始走,在每个结点i都有3种可能:
    1.被杀死,回到结点1处(概率为ki)
    2.找到出口,走出迷宫 (概率为ei)
    3.和该点相连有m条边,随机走一条
    求:走出迷宫所要走的边数的期望值。

    设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。

    叶子结点:
    E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);
    = ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei);

    非叶子结点:(m为与结点相连的边数)
    E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) );
    = ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei);

    设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci;

    对于非叶子结点i,设j为i的孩子结点,则
    ∑(E[child[i]]) = ∑E[j]
    = ∑(Aj*E[1] + Bj*E[father[j]] + Cj)
    = ∑(Aj*E[1] + Bj*E[i] + Cj)
    带入上面的式子得
    (1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj;
    由此可得
    Ai = (ki+(1-ki-ei)/m*∑Aj) / (1 - (1-ki-ei)/m*∑Bj);
    Bi = (1-ki-ei)/m / (1 - (1-ki-ei)/m*∑Bj);
    Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj);

    对于叶子结点
    Ai = ki;
    Bi = 1 - ki - ei;
    Ci = 1 - ki - ei;

    从叶子结点开始,直到算出 A1,B1,C1;

    E[1] = A1*E[1] + B1*0 + C1;
    所以
    E[1] = C1 / (1 - A1);
    若 A1趋近于1则无解...

      1 //STATUS:C++_AC_281MS_1440KB
      2 #include <functional>
      3 #include <algorithm>
      4 #include <iostream>
      5 //#include <ext/rope>
      6 #include <fstream>
      7 #include <sstream>
      8 #include <iomanip>
      9 #include <numeric>
     10 #include <cstring>
     11 #include <cassert>
     12 #include <cstdio>
     13 #include <string>
     14 #include <vector>
     15 #include <bitset>
     16 #include <queue>
     17 #include <stack>
     18 #include <cmath>
     19 #include <ctime>
     20 #include <list>
     21 #include <set>
     22 #include <map>
     23 using namespace std;
     24 //#pragma comment(linker,"/STACK:102400000,102400000")
     25 //using namespace __gnu_cxx;
     26 //define
     27 #define pii pair<int,int>
     28 #define mem(a,b) memset(a,b,sizeof(a))
     29 #define lson l,mid,rt<<1
     30 #define rson mid+1,r,rt<<1|1
     31 #define PI acos(-1.0)
     32 //typedef
     33 typedef __int64 LL;
     34 typedef unsigned __int64 ULL;
     35 //const
     36 const int N=10010;
     37 const int INF=0x3f3f3f3f;
     38 const int MOD=10007,STA=8000010;
     39 const LL LNF=1LL<<55;
     40 const double EPS=1e-9;
     41 const double OO=1e30;
     42 const int dx[4]={-1,0,1,0};
     43 const int dy[4]={0,1,0,-1};
     44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
     45 //Daily Use ...
     46 inline int sign(double x){return (x>EPS)-(x<-EPS);}
     47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
     48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
     49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
     50 template<class T> inline T Min(T a,T b){return a<b?a:b;}
     51 template<class T> inline T Max(T a,T b){return a>b?a:b;}
     52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
     53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
     54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
     55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
     56 //End
     57 
     58 vector<int> q[N];
     59 double k[N],e[N],A[N],B[N],C[N];
     60 int T,n;
     61 
     62 void dfs(int u,int fa)
     63 {
     64     int i,j,v,m=q[u].size();
     65     double P=(1-k[u]-e[u])/(m);
     66     double At,Bt,Ct;
     67     At=Bt=Ct=0;
     68     for(i=0;i<m;i++){
     69         v=q[u][i];
     70         if(v==fa)continue;
     71         dfs(v,u);
     72         At+=A[v];
     73         Bt+=B[v];
     74         Ct+=C[v];
     75     }
     76     A[u]=(P*At+k[u])/(1-P*Bt);
     77     B[u]=P/(1-P*Bt);
     78     C[u]=(P*Ct+1-k[u]-e[u])/(1-P*Bt);
     79 }
     80 
     81 int main(){
     82  //   freopen("in.txt","r",stdin);
     83     int ca=1,i,j,a,b;
     84     scanf("%d",&T);
     85     while(T--)
     86     {
     87         scanf("%d",&n);
     88         for(i=1;i<=n;i++)q[i].clear();
     89         for(i=1;i<n;i++){
     90             scanf("%d%d",&a,&b);
     91             q[a].push_back(b);
     92             q[b].push_back(a);
     93         }
     94         for(i=1;i<=n;i++){
     95             scanf("%lf%lf",&k[i],&e[i]);
     96             k[i]/=100,e[i]/=100;
     97         }
     98 
     99         dfs(1,0);
    100 
    101         printf("Case %d: ",ca++);
    102         if(sign(A[1]-1))printf("%.6lf
    ",C[1]/(1-A[1]));
    103         else printf("impossible
    ");
    104     }
    105     return 0;
    106 }
  • 相关阅读:
    Talairach空间、MNI空间、Native空间、Stereotaxic空间
    支持向量机通俗导论(理解SVM的三层境界) by v_JULY_v
    独立成分分析 与 功能连接之间的关联尝试 by 张高燕
    布罗德曼分区系统
    MNI模板和Talairach 模板的对比
    神经系统知识普及
    AC-PC线(前联合-后联合线)
    git hub的GUI软件配置与使用
    仿射相关理论
    linux下的僵尸进程处理SIGCHLD信号
  • 原文地址:https://www.cnblogs.com/zhsl/p/3240168.html
Copyright © 2020-2023  润新知