• 《PyTorch深度学习实践》刘二大人 第九讲


    课堂练习,课后作业不想做了……

     1 import torch
     2 from torchvision import transforms
     3 from torchvision import datasets
     4 from torch.utils.data import DataLoader
     5 import torch.nn.functional as F
     6 import torch.optim as optim
     7 
     8 # prepare dataset
     9 
    10 batch_size = 64
    11 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])  # 归一化,均值和方差
    12 
    13 train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
    14 train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
    15 test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
    16 test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
    17 
    18 
    19 # design model using class
    20 class Net(torch.nn.Module):
    21     def __init__(self):
    22         super(Net, self).__init__()
    23         self.l1 = torch.nn.Linear(784, 512)
    24         self.l2 = torch.nn.Linear(512, 256)
    25         self.l3 = torch.nn.Linear(256, 128)
    26         self.l4 = torch.nn.Linear(128, 64)
    27         self.l5 = torch.nn.Linear(64, 10)
    28 
    29     def forward(self, x):
    30         x = x.view(-1, 784)  # -1其实就是自动获取mini_batch
    31         x = F.relu(self.l1(x))
    32         x = F.relu(self.l2(x))
    33         x = F.relu(self.l3(x))
    34         x = F.relu(self.l4(x))
    35         return self.l5(x)  # 最后一层不做激活,不进行非线性变换
    36 model = Net()
    37 
    38 # construct loss and optimizer
    39 criterion = torch.nn.CrossEntropyLoss()
    40 optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
    41 
    42 
    43 # training cycle forward, backward, update
    44 def train(epoch):
    45     running_loss = 0.0
    46     for batch_idx, data in enumerate(train_loader, 0):
    47         # 获得一个批次的数据和标签
    48         inputs, target = data
    49         optimizer.zero_grad()
    50         # 获得模型预测结果(64, 10)
    51         outputs = model(inputs)
    52         # 交叉熵代价函数outputs(64,10),target(64)
    53         loss = criterion(outputs, target)
    54         loss.backward()
    55         optimizer.step()
    56 
    57         running_loss += loss.item()
    58         if batch_idx % 300 == 299:
    59             print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
    60             running_loss = 0.0
    61 
    62 #名字不能设为test会被识别为程序入口
    63 def hehe_11():
    64     correct = 0
    65     total = 0
    66     with torch.no_grad():
    67         for data in test_loader:
    68             images, labels = data
    69             outputs = model(images)
    70             _, predicted = torch.max(outputs.data, dim=1)  # dim = 1 列是第0个维度,行是第1个维度
    71             total += labels.size(0)
    72             correct += (predicted == labels).sum().item()  # 张量之间的比较运算
    73     print('accuracy on test set: %d %% ' % (100 * correct / total))
    74 
    75 
    76 if __name__ == '__main__':
    77     for epoch in range(10):
    78         train(epoch)
    79         hehe_11()

    结果:

    accuracy on test set: 97 %
    [9, 300] loss: 0.039
    [9, 600] loss: 0.042
    [9, 900] loss: 0.040
    accuracy on test set: 97 %
    [10, 300] loss: 0.033
    [10, 600] loss: 0.034
    [10, 900] loss: 0.032
    accuracy on test set: 97 %

  • 相关阅读:
    Week3 Teamework from Z.XML-团队分工及贡献分分配办法
    软件工程项目组Z.XML会议记录 2013/09/25
    Week2 Teamework from Z.XML 软件分析与用户需求调查(五)从对比中看见必应助手发展空间
    Week2 Teamework from Z.XML 软件分析与用户需求调查(三)必应助手体验评测
    Week2 Teamework from Z.XML 软件分析与用户需求调查(二)应用助手功能评测
    Week2 Teamework from Z.XML
    软件工程项目组Z.XML会议记录 2013/09/18
    [Go]条件语句
    Go常量与枚举类型
    Go内建变量类型
  • 原文地址:https://www.cnblogs.com/zhouyeqin/p/16818731.html
Copyright © 2020-2023  润新知