• Neural Network and DeepLearning (1.3)使用神经网络识别手写数字


    """
    network.py
    ~~~~~~~~~~
    
    A module to implement the stochastic gradient descent learning
    algorithm for a feedforward neural network.  Gradients are calculated
    using backpropagation.  Note that I have focused on making the code
    simple, easily readable, and easily modifiable.  It is not optimized,
    and omits many desirable features.
    """
    
    #### Libraries
    # Standard library
    import random
    
    # Third-party libraries
    import numpy as np
    
    class Network(object):
    
        def __init__(self, sizes):
            """The list ``sizes`` contains the number of neurons in the
            respective layers of the network.  For example, if the list
            was [2, 3, 1] then it would be a three-layer network, with the
            first layer containing 2 neurons, the second layer 3 neurons,
            and the third layer 1 neuron.  The biases and weights for the
            network are initialized randomly, using a Gaussian
            distribution with mean 0, and variance 1.  Note that the first
            layer is assumed to be an input layer, and by convention we
            won't set any biases for those neurons, since biases are only
            ever used in computing the outputs from later layers."""
            self.num_layers = len(sizes)
            self.sizes = sizes
            self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
            self.weights = [np.random.randn(y, x)
                            for x, y in zip(sizes[:-1], sizes[1:])]
    
        def feedforward(self, a):
            """Return the output of the network if ``a`` is input."""
            for b, w in zip(self.biases, self.weights):
                a = sigmoid(np.dot(w, a)+b)
            return a
    
        def SGD(self, training_data, epochs, mini_batch_size, eta,
                test_data=None):
            """Train the neural network using mini-batch stochastic
            gradient descent.  The ``training_data`` is a list of tuples
            ``(x, y)`` representing the training inputs and the desired
            outputs.  The other non-optional parameters are
            self-explanatory.  If ``test_data`` is provided then the
            network will be evaluated against the test data after each
            epoch, and partial progress printed out.  This is useful for
            tracking progress, but slows things down substantially."""
            if test_data: n_test = len(test_data)
            n = len(training_data)
            for j in xrange(epochs):
                random.shuffle(training_data)
                mini_batches = [
                    training_data[k:k+mini_batch_size]
                    for k in xrange(0, n, mini_batch_size)]
                for mini_batch in mini_batches:
                    self.update_mini_batch(mini_batch, eta)
                if test_data:
                    print "Epoch {0}: {1} / {2}".format(
                        j, self.evaluate(test_data), n_test)
                else:
                    print "Epoch {0} complete".format(j)
    
        def update_mini_batch(self, mini_batch, eta):
            """Update the network's weights and biases by applying
            gradient descent using backpropagation to a single mini batch.
            The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``
            is the learning rate."""
            nabla_b = [np.zeros(b.shape) for b in self.biases]
            nabla_w = [np.zeros(w.shape) for w in self.weights]
            for x, y in mini_batch:
                delta_nabla_b, delta_nabla_w = self.backprop(x, y)
                nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
                nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
            self.weights = [w-(eta/len(mini_batch))*nw
                            for w, nw in zip(self.weights, nabla_w)]
            self.biases = [b-(eta/len(mini_batch))*nb
                           for b, nb in zip(self.biases, nabla_b)]
    
        def backprop(self, x, y):
            """Return a tuple ``(nabla_b, nabla_w)`` representing the
            gradient for the cost function C_x.  ``nabla_b`` and
            ``nabla_w`` are layer-by-layer lists of numpy arrays, similar
            to ``self.biases`` and ``self.weights``."""
            nabla_b = [np.zeros(b.shape) for b in self.biases]
            nabla_w = [np.zeros(w.shape) for w in self.weights]
            # feedforward
            activation = x
            activations = [x] # list to store all the activations, layer by layer
            zs = [] # list to store all the z vectors, layer by layer
            for b, w in zip(self.biases, self.weights):
                z = np.dot(w, activation)+b
                zs.append(z)
                activation = sigmoid(z)
                activations.append(activation)
            # backward pass
            delta = self.cost_derivative(activations[-1], y) * 
                sigmoid_prime(zs[-1])
            nabla_b[-1] = delta
            nabla_w[-1] = np.dot(delta, activations[-2].transpose())
            # Note that the variable l in the loop below is used a little
            # differently to the notation in Chapter 2 of the book.  Here,
            # l = 1 means the last layer of neurons, l = 2 is the
            # second-last layer, and so on.  It's a renumbering of the
            # scheme in the book, used here to take advantage of the fact
            # that Python can use negative indices in lists.
            for l in xrange(2, self.num_layers):
                z = zs[-l]
                sp = sigmoid_prime(z)
                delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
                nabla_b[-l] = delta
                nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
            return (nabla_b, nabla_w)
    
        def evaluate(self, test_data):
            """Return the number of test inputs for which the neural
            network outputs the correct result. Note that the neural
            network's output is assumed to be the index of whichever
            neuron in the final layer has the highest activation."""
            test_results = [(np.argmax(self.feedforward(x)), y)
                            for (x, y) in test_data]
            return sum(int(x == y) for (x, y) in test_results)
    
        def cost_derivative(self, output_activations, y):
            """Return the vector of partial derivatives partial C_x /
            partial a for the output activations."""
            return (output_activations-y)
    
    #### Miscellaneous functions
    def sigmoid(z):
        """The sigmoid function."""
        return 1.0/(1.0+np.exp(-z))
    
    def sigmoid_prime(z):
        """Derivative of the sigmoid function."""
        return sigmoid(z)*(1-sigmoid(z))
  • 相关阅读:
    数据挖掘十大经典算法
    280行代码:Javascript 写的2048游戏
    o​r​a​l​c​e​ ​D​B​A​ ​培​训_lesson06
    Word2007怎样从随意页開始设置页码 word07页码设置毕业论文
    iOS图片模糊效果
    linux(Ubuntu)安装QQ2013
    [iOS翻译]《The Swift Programming Language》系列:Welcome to Swift-01
    【体系结构】转移预测器性能的定量评价
    Java实现 蓝桥杯VIP 算法提高 P0402
    Java实现 蓝桥杯VIP 算法提高 P0402
  • 原文地址:https://www.cnblogs.com/zhoulixue/p/6552741.html
Copyright © 2020-2023  润新知