• Mysql大批量数据导入ElasticSearch


    https://blog.csdn.net/u013850277/article/details/88904303?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task

    注:笔者环境 ES6.6.2、linux centos6.9、mysql8.0、三个节点、节点内存64G、八核CPU
    场景:

    目前Mysql 数据库数据量约10亿,有几张大表1亿左右,直接在Mysql查询出现各种效率问题,因此想着将数据导一份到ES,从而实现大数据快速检索的功能。
    通过Logstash插件批量导数据,个人感觉出现各种奇怪的问题,例如ES 内存暴满,mysql 所在服务器内存暴,最主要的是在一次导数时不能所导的数据量不能太大。经过一次次试探Logstash与优化Logstash导数的最后,终于还是动手直接运用ES提供的api进行导数了。
    目前直接模拟测试批量导数据,无论是通过Logstash还是ES 提供的Api峰值均能达到10万每秒左右。下面上代码,主要是通过官网提供的api (RestHighLevelClient、BulkProcessor)整理而来。目前由于Mysql 查询出来的数据需要进行一些处理,基本可达到3.5万+每秒。这个速度还有不小的优化空间,比如笔者通过稍微修改下述代码,启动几个线程同时执行bulk多张表,从kibana界面看出速度达到了成倍的提升,因为速度已基本达到笔者所想要的,便不怎么进行优化代码了。
    一、Maven 配置如下
    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>ElasticSearchDemo</groupId>
    <artifactId>ElasticSearchDemo</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <packaging>jar</packaging>

    <name>ElasticSearchDemo</name>
    <url>http://maven.apache.org</url>

    <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>
    <dependency>
    <groupId>junit</groupId>
    <artifactId>junit</artifactId>
    <version>3.8.1</version>
    <scope>test</scope>
    </dependency>

    <dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
    <version>6.6.2</version>
    </dependency>

    <dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>8.0.11</version>
    </dependency>

    <dependency>
    <groupId>org.apache.logging.log4j</groupId>
    <artifactId>log4j-core</artifactId>
    <version>2.11.1</version>
    </dependency>

    </dependencies>
    </project>

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    二、代码如下
    package service;

    import java.io.IOException;
    import java.sql.Connection;
    import java.sql.PreparedStatement;
    import java.sql.ResultSet;
    import java.sql.ResultSetMetaData;
    import java.util.ArrayList;
    import java.util.HashMap;
    import java.util.concurrent.TimeUnit;
    import java.util.function.BiConsumer;

    import org.apache.http.HttpHost;
    import org.apache.logging.log4j.LogManager;
    import org.apache.logging.log4j.Logger;
    import org.elasticsearch.action.ActionListener;
    import org.elasticsearch.action.admin.indices.create.CreateIndexRequest;
    import org.elasticsearch.action.admin.indices.create.CreateIndexResponse;
    import org.elasticsearch.action.bulk.BackoffPolicy;
    import org.elasticsearch.action.bulk.BulkProcessor;
    import org.elasticsearch.action.bulk.BulkRequest;
    import org.elasticsearch.action.bulk.BulkResponse;
    import org.elasticsearch.action.index.IndexRequest;
    import org.elasticsearch.client.RequestOptions;
    import org.elasticsearch.client.RestClient;
    import org.elasticsearch.client.RestHighLevelClient;
    import org.elasticsearch.common.settings.Settings;
    import org.elasticsearch.common.unit.ByteSizeUnit;
    import org.elasticsearch.common.unit.ByteSizeValue;
    import org.elasticsearch.common.unit.TimeValue;

    import utils.DBHelper;

    /**
    * @author Ye
    * @time 2019年3月29日
    *
    * 类说明:通过BulkProcess批量将Mysql数据导入ElasticSearch中
    */

    public class BulkProcessDemo {

    private static final Logger logger = LogManager.getLogger(BulkProcessDemo.class);

    public static void main(String[] args) {
    try {
    long startTime = System.currentTimeMillis();
    String tableName = "testTable";
    createIndex(tableName);
    writeMysqlDataToES(tableName);

    logger.info(" use time: " + (System.currentTimeMillis() - startTime) / 1000 + "s");
    } catch (Exception e) {
    logger.error(e.getMessage());
    e.printStackTrace();
    }
    }

    /**
    * 创建索引
    * @param indexName
    * @throws IOException
    */
    public static void createIndex(String indexName) throws IOException {
    RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("es01", 9200, "http")));
    // ES 索引默认需要小写,故笔者将其转为小写
    CreateIndexRequest requestIndex = new CreateIndexRequest(indexName.toLowerCase());
    // 注: 设置副本数为0,索引刷新时间为-1对大批量索引数据效率的提升有不小的帮助
    requestIndex.settings(Settings.builder().put("index.number_of_shards", 5)
    .put("index.number_of_replicas", 0)
    .put("index.refresh_interval", "-1"));

    // CreateIndexResponse createIndexResponse = client.indices().create(requestIndex, RequestOptions.DEFAULT);
    client.close();
    }

    /**
    * 将mysql 数据查出组装成es需要的map格式,通过批量写入es中
    *
    * @param tableName
    */
    private static void writeMysqlDataToES(String tableName) {

    RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("eshost", 9200, "http")));// 初始化
    BulkProcessor bulkProcessor = getBulkProcessor(client);
    Connection conn = null;
    PreparedStatement ps = null;
    ResultSet rs = null;

    try {
    conn = DBHelper.getConn();
    logger.info("Start handle data :" + tableName);

    String sql = "SELECT * from " + tableName;

    ps = conn.prepareStatement(sql, ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY);
    ps.setFetchSize(Integer.MIN_VALUE);
    rs = ps.executeQuery();

    ResultSetMetaData colData = rs.getMetaData();

    ArrayList<HashMap<String, String>> dataList = new ArrayList<HashMap<String, String>>();

    // bulkProcessor 添加的数据支持的方式并不多,查看其api发现其支持map键值对的方式,故笔者在此将查出来的数据转换成hashMap方式
    HashMap<String, String> map = null;
    int count = 0;
    String c = null;
    String v = null;
    while (rs.next()) {
    count++;
    map = new HashMap<String, String>(128);
    for (int i = 1; i <= colData.getColumnCount(); i++) {
    c = colData.getColumnName(i);
    v = rs.getString(c);
    map.put(c, v);
    }
    dataList.add(map);
    // 每10万条写一次,不足的批次的最后再一并提交
    if (count % 100000 == 0) {
    logger.info("Mysql handle data number : " + count);
    // 将数据添加到 bulkProcessor 中
    for (HashMap<String, String> hashMap2 : dataList) {
    bulkProcessor.add(new IndexRequest(tableName.toLowerCase(), "gzdc", hashMap2.get("S_GUID"))
    .source(hashMap2));
    }
    // 每提交一次便将map与list清空
    map.clear();
    dataList.clear();
    }
    }

    // count % 100000 处理未提交的数据
    for (HashMap<String, String> hashMap2 : dataList) {
    bulkProcessor.add(
    new IndexRequest(tableName.toLowerCase(), "gzdc", hashMap2.get("S_GUID")).source(hashMap2));
    }

    logger.info("-------------------------- Finally insert number total : " + count);
    // 将数据刷新到es, 注意这一步执行后并不会立即生效,取决于bulkProcessor设置的刷新时间
    bulkProcessor.flush();

    } catch (Exception e) {
    logger.error(e.getMessage());
    } finally {
    try {
    rs.close();
    ps.close();
    conn.close();
    boolean terminatedFlag = bulkProcessor.awaitClose(150L, TimeUnit.SECONDS);
    client.close();
    logger.info(terminatedFlag);
    } catch (Exception e) {
    logger.error(e.getMessage());
    }
    }
    }

    /**
    * 创建bulkProcessor并初始化
    * @param client
    * @return
    */
    private static BulkProcessor getBulkProcessor(RestHighLevelClient client) {

    BulkProcessor bulkProcessor = null;
    try {

    BulkProcessor.Listener listener = new BulkProcessor.Listener() {
    @Override
    public void beforeBulk(long executionId, BulkRequest request) {
    logger.info("Try to insert data number : " + request.numberOfActions());
    }

    @Override
    public void afterBulk(long executionId, BulkRequest request, BulkResponse response) {
    logger.info("************** Success insert data number : " + request.numberOfActions() + " , id: "
    + executionId);
    }

    @Override
    public void afterBulk(long executionId, BulkRequest request, Throwable failure) {
    logger.error("Bulk is unsuccess : " + failure + ", executionId: " + executionId);
    }
    };

    BiConsumer<BulkRequest, ActionListener<BulkResponse>> bulkConsumer = (request, bulkListener) -> client
    .bulkAsync(request, RequestOptions.DEFAULT, bulkListener);

    // bulkProcessor = BulkProcessor.builder(bulkConsumer, listener).build();
    BulkProcessor.Builder builder = BulkProcessor.builder(bulkConsumer, listener);
    builder.setBulkActions(5000);
    builder.setBulkSize(new ByteSizeValue(100L, ByteSizeUnit.MB));
    builder.setConcurrentRequests(10);
    builder.setFlushInterval(TimeValue.timeValueSeconds(100L));
    builder.setBackoffPolicy(BackoffPolicy.constantBackoff(TimeValue.timeValueSeconds(1L), 3));
    // 注意点:在这里感觉有点坑,官网样例并没有这一步,而笔者因一时粗心也没注意,在调试时注意看才发现,上面对builder设置的属性没有生效
    bulkProcessor = builder.build();

    } catch (Exception e) {
    e.printStackTrace();
    try {
    bulkProcessor.awaitClose(100L, TimeUnit.SECONDS);
    client.close();
    } catch (Exception e1) {
    logger.error(e1.getMessage());
    }
    }
    return bulkProcessor;
    }

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    数据库连接类

    package utils;

    import java.sql.Connection;
    import java.sql.DriverManager;

    public class DBHelper {

    public static final String url = "jdbc:mysql://xx.xx.xx.xx:3306/xxdemo?useSSL=true";
    public static final String name = "com.mysql.cj.jdbc.Driver";
    public static final String user = "xxx";
    public static final String password = "xxxx";

    public static Connection conn = null;

    public static Connection getConn() {
    try {
    Class.forName(name);
    conn = DriverManager.getConnection(url, user, password);//获取连接
    } catch (Exception e) {
    e.printStackTrace();
    }
    return conn;
    }
    }


    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    日志文件配置文件:log4j2.properties

    property.filePath=logs
    property.filePattern=logs/%d{yyyy}/%d{MM}
    #u8F93u51FAu683Cu5F0F
    property.layoutPattern=%-d{yyyy-MM-dd HH:mm:ss SSS} [ %p ] [ %c ] %m%n
    rootLogger.level = info


    appender.console.type = Console
    appender.console.name = STDOUT
    appender.console.target = SYSTEM_OUT
    appender.console.layout.type = PatternLayout
    appender.console.layout.pattern = ${layoutPattern}
    rootLogger.appenderRef.stdout.ref = STDOUT

    appender.I.type = RollingFile
    appender.I.name = InfoRollingFile
    appender.I.fileName = ${filePath}/es-info.log
    appender.I.filePattern = ${filePattern}/es_info.log
    appender.I.layout.type = PatternLayout
    appender.I.layout.pattern = ${layoutPattern}
    appender.I.policies.type = Policies
    appender.I.policies.time.type = TimeBasedTriggeringPolicy
    appender.I.policies.time.interval = 1
    appender.I.policies.time.modulate = true
    appender.I.policies.size.type = SizeBasedTriggeringPolicy
    appender.I.policies.size.size=20M
    appender.I.strategy.type = DefaultRolloverStrategy
    appender.I.strategy.max = 100
    #u8FC7u6EE4INFOu4EE5u4E0Au4FE1u606F
    appender.I.filter.threshold.type = ThresholdFilter
    appender.I.filter.threshold.level = WARN
    appender.I.filter.threshold.onMatch = DENY
    appender.I.filter.threshold.onMisMatch=NEUTRAL

    rootLogger.appenderRef.I.ref = InfoRollingFile
    rootLogger.appenderRef.I.level=INFO


    appender.E.type = RollingFile
    appender.E.name = ErrorRollingFile
    appender.E.fileName = ${filePath}/es-error.log
    appender.E.filePattern = ${filePattern}/es_error.log
    appender.E.layout.type = PatternLayout
    appender.E.layout.pattern = ${layoutPattern}
    appender.E.policies.type = Policies
    appender.E.policies.time.type = TimeBasedTriggeringPolicy
    appender.E.policies.time.interval = 1
    appender.E.policies.time.modulate = true
    appender.E.policies.size.type = SizeBasedTriggeringPolicy
    appender.E.policies.size.size=20M
    appender.E.strategy.type = DefaultRolloverStrategy
    appender.E.strategy.max = 100
    #u8FC7u6EE4ERRORu4EE5u4E0Au4FE1u606F
    appender.E.filter.threshold.type = ThresholdFilter
    appender.E.filter.threshold.level = FATAL
    appender.E.filter.threshold.onMatch = DENY
    appender.E.filter.threshold.onMisMatch=NEUTRAL

    rootLogger.appenderRef.E.ref = ErrorRollingFile
    rootLogger.appenderRef.E.level=ERROR

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    核心代码解说:

    三、验证上述代码结果
    1、起初笔者直接在本地Eclipse中运行,由于电脑配置所限制,写入es 速度只能达到5000/s左右的样子。

    2、直接将代码打包成可运行的jar,通过java -jar xxx.jar 方式在linux中运行,基本可以达到2.5万/s,结果如下图所示:

    注:笔者下图是将一张具有5400万的数据,一次性导入ES,该表60多个字段

    运行的部分日志如下:
    2019-03-29 17:31:34 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2679
    2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Mysql handle data number : 13500000
    2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2681
    2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2683
    2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2682
    2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:36 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2685
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2686
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2687
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2684
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2688
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2689
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2691
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2693
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2692
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2690
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] Try to insert data number : 5000
    2019-03-29 17:31:37 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2696
    2019-03-29 17:31:38 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2694
    2019-03-29 17:31:38 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2695
    2019-03-29 17:31:38 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2697
    2019-03-29 17:31:38 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2698
    2019-03-29 17:31:38 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2699
    2019-03-29 17:31:38 [ INFO ] [ service.BulkProcessDemo ] ************** Success insert data number : 5000 , id: 2700
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    简单修改下相应参数进行bulk,查看效率
    修改下每个批次上传 10000条数据,setBulkSize 设置成300M,数据处理批次修改成20万(if (count % 200000 == 0) ),其它配置一样,处理另一张大表,效果如下:
    该表数据量:该表27个字段
    SELECT count(1) from xxxxxxxxx; – 171769567

    全量bulk进es用时:5113s
    2019-04-01 11:39:04.453 INFO 28080 — [nio-8080-exec-1] s.ElasticServiceImpl : use time: 5113s

    es 监控如下图

    四、小结
    笔者个人不深入的学习感觉 Logstash 对于这种需要一次性大批量将数据导入ES的需求适应性可能不太好。
    大批量的数据导入ES 个人推荐BulkProcessor, 不论是什么数据,只需要将其转换成Map键值对的格式便可运用bulkProcessor实现流式导入。
    对于导入效率需要看集群的环境以及导入批次的设置,还有ES的相关优化配置。
    五、遇到的小坑
    问题一
    由于表数据量太大,一开始本想以时间段(原数据库中有时间相关的字段)分批查出数据再将其导入ES(在用Logstash插件导入时就是这么处理的,但由于数据在不同时间的分布情况很不一样,在运用Logstash插件导入时经常因为某一时间段数据量太大而导致死机问题)。
    解决:JDBC resltset中fetchSize的设置。
    详见:[正确使用MySQL JDBC setFetchSize()方法解决JDBC处理大结果集内在溢出]

    问题二
    通过官网提供的代码设置了bulder 相关的属性,比如每个批次提交多少数据,但程序运行起来发现这些设置并没有生效。
    官网代码如下:
    BulkProcessor bulkProcessor =
    BulkProcessor.builder(bulkConsumer, listener).build();
    BiConsumer<BulkRequest, ActionListener<BulkResponse>> bulkConsumer =
    (request, bulkListener) ->
    client.bulkAsync(request, RequestOptions.DEFAULT, bulkListener);
    BulkProcessor.Builder builder =
    BulkProcessor.builder(bulkConsumer, listener);
    builder.setBulkActions(500);
    builder.setBulkSize(new ByteSizeValue(1L, ByteSizeUnit.MB));
    builder.setConcurrentRequests(0);
    builder.setFlushInterval(TimeValue.timeValueSeconds(10L));
    builder.setBackoffPolicy(BackoffPolicy
    .constantBackoff(TimeValue.timeValueSeconds(1L), 3));
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    解决:其实该坑的出现主要是笔者个人在此太粗心了,还有就是太相信官网了。
    在这个问题上稍微留意下上述代码就可以看出 builder 虽然设置了,但并没有将其设置后的值转给那个类调用了,因此bulkProcessor还是使用了默认的配置。

    BulkProcessor bulkProcessor =
    BulkProcessor.builder(bulkConsumer, listener).build();
    其实这一步可以换成如下(该bulkProcessor 的创建应在builder 属性设置完成之后)
    BulkProcessor bulkProcessor = builder.build();

    # 完整代码如下:
    BulkProcessor.Builder builder = BulkProcessor.builder(bulkConsumer, listener);
    builder.setBulkActions(5000);
    builder.setBulkSize(new ByteSizeValue(100L, ByteSizeUnit.MB));
    builder.setConcurrentRequests(10);
    builder.setFlushInterval(TimeValue.timeValueSeconds(100L));
    builder.setBackoffPolicy(BackoffPolicy.constantBackoff(TimeValue.timeValueSeconds(1L), 3));
    bulkProcessor = builder.build();
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    在这里可能会感觉如何将bulkProcessor 转给监听者(listener),查看builder.build(); 瞄了下底层会发现其实该方法最终是调用如下方法的:

    /**
    * Builds a new bulk processor.
    */
    public BulkProcessor build() {
    return new BulkProcessor(consumer, backoffPolicy, listener, concurrentRequests, bulkActions,
    bulkSize, flushInterval, scheduler, onClose, createBulkRequestWithGlobalDefaults());
    }
    1
    2
    3
    4
    5
    6
    7
    完整代码见:https://github.com/yechunbo/BigdataSearchPro.git

    参考文档:

    https://www.elastic.co/guide/en/elasticsearch/client/java-rest/6.6/java-rest-high-document-bulk.html
    https://www.elastic.co/guide/en/elasticsearch/client/java-api/6.6/_log4j_2_logger.html
    https://docs.oracle.com/cd/E11882_01/java.112/e16548/resltset.htm#JJDBC28622
    正确使用MySQL JDBC setFetchSize()方法解决JDBC处理大结果集内在溢出
    JDBC读取数据优化-fetch size
    ————————————————
    版权声明:本文为CSDN博主「在屋顶听歌」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/u013850277/article/details/88904303

  • 相关阅读:
    FI关于凭证的修改和冲销操作
    abapAbout ABAP Debugger
    sd如何控制定价条件根据用户不同而操作不同(有的可以输入有的不可以)
    七种场景下的软件工作量估算步骤
    MMPP物料替换
    abap一个功能非常全面的增强出口查找工具 (仅供学习)
    BASISMonitoring in SAP Event Management
    2018GDKOI游记
    点击出现webQQ
    TCP/IP协议栈的基本工作原理
  • 原文地址:https://www.cnblogs.com/zhoading/p/12502128.html
Copyright © 2020-2023  润新知